Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 78136 by msup trace by abdo last updated on 14/Jan/20

give the equation of tangente  at  p(x_0 ,f(x_0 ))  1)f(x)=e^(−x^2 ) ln(1−2x)   x_0 =−1  2)f(x)=(x^2 −3)arctan(x^2 )  x_0   =1  3) f(x) =((e^(−x) sin(πx))/(x^2  +3))   x_0 =(1/2)  4) f(x)=e^(−x) (√(e^x^2  −1))  and x_0 = 2

$${give}\:{the}\:{equation}\:{of}\:{tangente} \\ $$$${at}\:\:{p}\left({x}_{\mathrm{0}} ,{f}\left({x}_{\mathrm{0}} \right)\right) \\ $$$$\left.\mathrm{1}\right){f}\left({x}\right)={e}^{−{x}^{\mathrm{2}} } {ln}\left(\mathrm{1}−\mathrm{2}{x}\right)\:\:\:{x}_{\mathrm{0}} =−\mathrm{1} \\ $$$$\left.\mathrm{2}\right){f}\left({x}\right)=\left({x}^{\mathrm{2}} −\mathrm{3}\right){arctan}\left({x}^{\mathrm{2}} \right) \\ $$$${x}_{\mathrm{0}} \:\:=\mathrm{1} \\ $$$$\left.\mathrm{3}\right)\:{f}\left({x}\right)\:=\frac{{e}^{−{x}} {sin}\left(\pi{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{3}}\:\:\:{x}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left.\mathrm{4}\right)\:{f}\left({x}\right)={e}^{−{x}} \sqrt{{e}^{{x}^{\mathrm{2}} } −\mathrm{1}} \\ $$$${and}\:{x}_{\mathrm{0}} =\:\mathrm{2} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 14/Jan/20

1) equ.of tangente is y =f^′ (−1)(x+1) )f(−1)  f(−1)=e^(−1) ln(3) and  f^′ (x)=−2xe^(−x^2 ) ln(1−2x)−(2/(1−2x))e^(−x^2  ) ⇒  f^′ (−1) =2 e^(−1) ln(3)−(2/3) e^(−1)  =(2ln(3)−(2/3))e^(−1)  ⇒  y =(2ln(3)−(2/3))(x+1) +e^(−1) ln(3)

$$\left.\mathrm{1}\left.\right)\:{equ}.{of}\:{tangente}\:{is}\:{y}\:={f}^{'} \left(−\mathrm{1}\right)\left({x}+\mathrm{1}\right)\:\right){f}\left(−\mathrm{1}\right) \\ $$$${f}\left(−\mathrm{1}\right)={e}^{−\mathrm{1}} {ln}\left(\mathrm{3}\right)\:{and}\:\:{f}^{'} \left({x}\right)=−\mathrm{2}{xe}^{−{x}^{\mathrm{2}} } {ln}\left(\mathrm{1}−\mathrm{2}{x}\right)−\frac{\mathrm{2}}{\mathrm{1}−\mathrm{2}{x}}{e}^{−{x}^{\mathrm{2}} \:} \Rightarrow \\ $$$${f}^{'} \left(−\mathrm{1}\right)\:=\mathrm{2}\:{e}^{−\mathrm{1}} {ln}\left(\mathrm{3}\right)−\frac{\mathrm{2}}{\mathrm{3}}\:{e}^{−\mathrm{1}} \:=\left(\mathrm{2}{ln}\left(\mathrm{3}\right)−\frac{\mathrm{2}}{\mathrm{3}}\right){e}^{−\mathrm{1}} \:\Rightarrow \\ $$$${y}\:=\left(\mathrm{2}{ln}\left(\mathrm{3}\right)−\frac{\mathrm{2}}{\mathrm{3}}\right)\left({x}+\mathrm{1}\right)\:+{e}^{−\mathrm{1}} {ln}\left(\mathrm{3}\right) \\ $$

Commented by mathmax by abdo last updated on 14/Jan/20

1) y =f^′ (−1)(x+1)+f(−1)

$$\left.\mathrm{1}\right)\:{y}\:={f}^{'} \left(−\mathrm{1}\right)\left({x}+\mathrm{1}\right)+{f}\left(−\mathrm{1}\right) \\ $$

Commented by jagoll last updated on 14/Jan/20

wrong the four line

$${wrong}\:{the}\:{four}\:{line}\: \\ $$

Commented by msup trace by abdo last updated on 15/Jan/20

forgive y=(2ln3−(2/3))e^(−1) (x+1)+e^(−1) ln(3)

$${forgive}\:{y}=\left(\mathrm{2}{ln}\mathrm{3}−\frac{\mathrm{2}}{\mathrm{3}}\right){e}^{−\mathrm{1}} \left({x}+\mathrm{1}\right)+{e}^{−\mathrm{1}} {ln}\left(\mathrm{3}\right) \\ $$

Commented by msup trace by abdo last updated on 15/Jan/20

2)f(x)=(x^2 −3)atctan(x^2 ) ⇒  f(1)=−2×(π/4) =−(π/2) and  f^′ (x)=2xarctan(x^2 )+((2x(x^2 −3))/(1+x^4 ))  ⇒f^′ (1)=2.(π/4) +((−4)/2) =(π/2)−2 ⇒  the rquation of tangente is  y=f^′ (1)(x−1)+f(1)  =((π/2)−2)(x−1)−(π/2)  =((π/2)−2)x−(π/2)+2−(π/2) ⇒  y=((π/2)−2)x+2−π

$$\left.\mathrm{2}\right){f}\left({x}\right)=\left({x}^{\mathrm{2}} −\mathrm{3}\right){atctan}\left({x}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${f}\left(\mathrm{1}\right)=−\mathrm{2}×\frac{\pi}{\mathrm{4}}\:=−\frac{\pi}{\mathrm{2}}\:{and} \\ $$$${f}^{'} \left({x}\right)=\mathrm{2}{xarctan}\left({x}^{\mathrm{2}} \right)+\frac{\mathrm{2}{x}\left({x}^{\mathrm{2}} −\mathrm{3}\right)}{\mathrm{1}+{x}^{\mathrm{4}} } \\ $$$$\Rightarrow{f}^{'} \left(\mathrm{1}\right)=\mathrm{2}.\frac{\pi}{\mathrm{4}}\:+\frac{−\mathrm{4}}{\mathrm{2}}\:=\frac{\pi}{\mathrm{2}}−\mathrm{2}\:\Rightarrow \\ $$$${the}\:{rquation}\:{of}\:{tangente}\:{is} \\ $$$${y}={f}^{'} \left(\mathrm{1}\right)\left({x}−\mathrm{1}\right)+{f}\left(\mathrm{1}\right) \\ $$$$=\left(\frac{\pi}{\mathrm{2}}−\mathrm{2}\right)\left({x}−\mathrm{1}\right)−\frac{\pi}{\mathrm{2}} \\ $$$$=\left(\frac{\pi}{\mathrm{2}}−\mathrm{2}\right){x}−\frac{\pi}{\mathrm{2}}+\mathrm{2}−\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$${y}=\left(\frac{\pi}{\mathrm{2}}−\mathrm{2}\right){x}+\mathrm{2}−\pi \\ $$$$ \\ $$

Answered by jagoll last updated on 14/Jan/20

(1) f(x_0 )= e^(−1) ln(3)=((ln(3))/e)  slope = m = f ′(−1)  f ′(x)= −2xe^(−x^2 ) ln(1−2x)+(e^(−x^2 ) /(1−2x))×(−2)  f ′(−1) = 2e^(−1) ln(3)−((2e^(−1) )/3)  = ((2ln(3))/e)−(2/(3e))= ((6ln(3)−2)/(3e))  tangent line is   y = ((6ln(3)−2)/(3e))(x+1)+((ln(3))/e)

$$\left(\mathrm{1}\right)\:{f}\left({x}_{\mathrm{0}} \right)=\:{e}^{−\mathrm{1}} {ln}\left(\mathrm{3}\right)=\frac{{ln}\left(\mathrm{3}\right)}{{e}} \\ $$$${slope}\:=\:{m}\:=\:{f}\:'\left(−\mathrm{1}\right) \\ $$$${f}\:'\left({x}\right)=\:−\mathrm{2}{xe}^{−{x}^{\mathrm{2}} } {ln}\left(\mathrm{1}−\mathrm{2}{x}\right)+\frac{{e}^{−{x}^{\mathrm{2}} } }{\mathrm{1}−\mathrm{2}{x}}×\left(−\mathrm{2}\right) \\ $$$${f}\:'\left(−\mathrm{1}\right)\:=\:\mathrm{2}{e}^{−\mathrm{1}} {ln}\left(\mathrm{3}\right)−\frac{\mathrm{2}{e}^{−\mathrm{1}} }{\mathrm{3}} \\ $$$$=\:\frac{\mathrm{2}{ln}\left(\mathrm{3}\right)}{{e}}−\frac{\mathrm{2}}{\mathrm{3}{e}}=\:\frac{\mathrm{6}{ln}\left(\mathrm{3}\right)−\mathrm{2}}{\mathrm{3}{e}} \\ $$$${tangent}\:{line}\:{is}\: \\ $$$${y}\:=\:\frac{\mathrm{6}{ln}\left(\mathrm{3}\right)−\mathrm{2}}{\mathrm{3}{e}}\left({x}+\mathrm{1}\right)+\frac{{ln}\left(\mathrm{3}\right)}{{e}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com