Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 78162 by TawaTawa last updated on 14/Jan/20

Find the sum of nth term     Σ_(k = 1) ^n  (1/k^2 )

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{nth}\:\mathrm{term} \\ $$$$\:\:\:\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} } \\ $$

Commented by msup trace by abdo last updated on 15/Jan/20

if you have the answer post it...

$${if}\:{you}\:{have}\:{the}\:{answer}\:{post}\:{it}... \\ $$

Commented by TawaTawa last updated on 15/Jan/20

I don′t know the answer or how to solve.

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{or}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}. \\ $$

Commented by mathmax by abdo last updated on 15/Jan/20

this sum can be reduced by this manner by iam waiting for  a miraculous method..!   let ξ_n (2)=Σ_(k=1) ^n  (1/k^2 ) ⇒  ξ_n (2) =Σ_(p=1) ^([(n/2)])   (1/((2p)^2 )) +Σ_(p=0) ^([((n−1)/2)])  (1/((2p+1)^2 ))  =(1/4) ξ_([(n/2)])  (2)+Σ_(p=0) ^([((n−1)/2)])  (1/((2p+1)^2 ))  and  ξ_([(n/2)]) (2) =Σ_(k=1) ^([(n/2)])  (1/k^2 ) =Σ_(p=1) ^([(1/2)[(n/2)]]) (1/((2p)^2 )) +Σ_(p=0) ^([(([(n/2)]−1)/2)]) (1/((2p+1)^2 ))  =ξ_([(([(n/2)])/2)]) (2) +Σ_(p=0) ^([(([(n/2)]−1)/2)])  (1/((2p+1)^2 )) and we remplace in ξ_n (2)  also we can use the decomposition   ξ_n (2) =Σ_(p=1) ^([(n/3)])  (1/((3p)^2 )) + Σ_(p=0) ^([((n−1)/3)])  (1/((3p+1)^2 )) +Σ_(p=0) ^([((n−2)/3)])  (1/((3p+2)^2 ))  =....

$${this}\:{sum}\:{can}\:{be}\:{reduced}\:{by}\:{this}\:{manner}\:{by}\:{iam}\:{waiting}\:{for} \\ $$$${a}\:{miraculous}\:{method}..!\:\:\:{let}\:\xi_{{n}} \left(\mathrm{2}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\xi_{{n}} \left(\mathrm{2}\right)\:=\sum_{{p}=\mathrm{1}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{p}\right)^{\mathrm{2}} }\:+\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\:\xi_{\left[\frac{{n}}{\mathrm{2}}\right]} \:\left(\mathrm{2}\right)+\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:\:{and} \\ $$$$\xi_{\left[\frac{{n}}{\mathrm{2}}\right]} \left(\mathrm{2}\right)\:=\sum_{{k}=\mathrm{1}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:=\sum_{{p}=\mathrm{1}} ^{\left[\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{{n}}{\mathrm{2}}\right]\right]} \frac{\mathrm{1}}{\left(\mathrm{2}{p}\right)^{\mathrm{2}} }\:+\sum_{{p}=\mathrm{0}} ^{\left[\frac{\left[\frac{{n}}{\mathrm{2}}\right]−\mathrm{1}}{\mathrm{2}}\right]} \frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\xi_{\left[\frac{\left[\frac{{n}}{\mathrm{2}}\right]}{\mathrm{2}}\right]} \left(\mathrm{2}\right)\:+\sum_{{p}=\mathrm{0}} ^{\left[\frac{\left[\frac{{n}}{\mathrm{2}}\right]−\mathrm{1}}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:{and}\:{we}\:{remplace}\:{in}\:\xi_{{n}} \left(\mathrm{2}\right) \\ $$$${also}\:{we}\:{can}\:{use}\:{the}\:{decomposition}\: \\ $$$$\xi_{{n}} \left(\mathrm{2}\right)\:=\sum_{{p}=\mathrm{1}} ^{\left[\frac{{n}}{\mathrm{3}}\right]} \:\frac{\mathrm{1}}{\left(\mathrm{3}{p}\right)^{\mathrm{2}} }\:+\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{3}}\right]} \:\frac{\mathrm{1}}{\left(\mathrm{3}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:+\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{2}}{\mathrm{3}}\right]} \:\frac{\mathrm{1}}{\left(\mathrm{3}{p}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$=.... \\ $$

Commented by TawaTawa last updated on 15/Jan/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com