Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 78198 by john santu last updated on 15/Jan/20

Commented by john santu last updated on 15/Jan/20

dear Mjs sir.  i ask for your opinion on this answer?  right or not.

dearMjssir.iaskforyouropiniononthisanswer?rightornot.

Commented by MJS last updated on 15/Jan/20

right!

right!

Commented by john santu last updated on 15/Jan/20

thanks sir

thankssir

Commented by mathmax by abdo last updated on 15/Jan/20

let I =∫_0 ^(π/2) (√(1−sin(x)))dx ⇒I =∫_0 ^(π/2) (√(1−cos((π/2)−x)))dx  =_((π/2)−x =t)     −∫_0 ^(π/2) (√(1−cost))(−dt) =∫_0 ^(π/2) (√(1−cost))dt  =∫_0 ^(π/2) (√(2sin^2 ((t/2))))dt =(√2)∫_0 ^(π/2) sin((t/2))dt  =−2(√2)[cos((t/2))]_0 ^(π/2)  =−2(√2)(((√2)/2)−1) =−2 +2(√2) ⇒  I =2(√2)−2

letI=0π21sin(x)dxI=0π21cos(π2x)dx=π2x=t0π21cost(dt)=0π21costdt=0π22sin2(t2)dt=20π2sin(t2)dt=22[cos(t2)]0π2=22(221)=2+22I=222

Answered by MJS last updated on 15/Jan/20

two other possibilities  (1)  ∫(√(1−sin x))dx=       [t=(√(1−sin x)) → dx=−((2(√(1−sin x)))/(cos x))dx]  =∫((−2t)/(√(2−t^2 )))dt=2(√(2−t^2 ))=2(√(1+sin x))+C    (2)  ∫(√(1−sin x))dx=       [t=sin x → dx=(dt/(cos x))]  =∫(dt/(√(t+1)))=2(√(t+1))=2(√(1+sin x))+C

twootherpossibilities(1)1sinxdx=[t=1sinxdx=21sinxcosxdx]=2t2t2dt=22t2=21+sinx+C(2)1sinxdx=[t=sinxdx=dtcosx]=dtt+1=2t+1=21+sinx+C

Commented by jagoll last updated on 15/Jan/20

waw...amazing sir

waw...amazingsir

Commented by MJS last updated on 15/Jan/20

...sorry there had been a typo, now it′s correct

...sorrytherehadbeenatypo,nowitscorrect

Terms of Service

Privacy Policy

Contact: info@tinkutara.com