Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 78263 by msup trace by abdo last updated on 15/Jan/20

find lim_(n→+∞) Σ_(k=1) ^n sin((1/(k+n)))

$${find}\:{lim}_{{n}\rightarrow+\infty} \sum_{{k}=\mathrm{1}} ^{{n}} {sin}\left(\frac{\mathrm{1}}{{k}+{n}}\right) \\ $$

Commented by jagoll last updated on 15/Jan/20

Σ_(k=1) ^n  lim_(n→+∞)  sin ((1/(k+n)))=0

$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{{k}+{n}}\right)=\mathrm{0} \\ $$

Commented by msup trace by abdo last updated on 15/Jan/20

show your work sir.its insufficient...

$${show}\:{your}\:{work}\:{sir}.{its}\:{insufficient}... \\ $$

Answered by mind is power last updated on 15/Jan/20

   lemna  ∀x>0  x−(x^3 /6)≤sin(x)≤x  proff  since  sin(x)=Σ_(k≥0) (((−1)^k x^(2k+1) )/((2k+1)!))=x−(x^3 /6)+Σ_(k≥2) (((−1)^k x^(2k+1) )/((2k+1)!))≥x−(x^3 /6)  sin(x)=x+Σ_(k≥1) (((−1)^k x^(2k+1) )/((2k+1)!))<x  ⇒        x−(x^3 /6)<sin(x)<x  ∀k∈[1,n] ∀n∈N^∗  we have  (1/(k+n))−(1/6)((1/(k+n)))^3 <sin((1/(k+n)))<(1/(k+n))  ⇒Σ_(k=1) ^n {((1/(k+n)))−(1/(6(k+n)^3 ))}<Σ_(k=1) ^n sin((1/(k+n)))<Σ_(k=1) ^n (1/(k+n))  lim_(n→∞) Σ_(k=1) ^n (1/(n+k))=lim_(n→∞) (1/n)Σ_(k=1) ^n (1/(1+(k/n)))=∫_0 ^1 (dx/(1+x))=ln(2)  Σ_(k=1) ^n (1/((n+k)^3 ))≤(1/n^2 ).Σ_(k=1) ^n (1/(n+k))≤((ln(2))/n^2 )→0  lim_(n→∞) {Σ_(k=1) ^n (1/(k+n))−(1/6)Σ_(k=1) ^n (1/((n+k)^3 ))}<lim_(n→∞) Σsin((1/(k+n)))<lim_(n→∞) Σ(1/(n+k))  ln(2)≤lim_(n→∞) Σ_(k=1) ^n sin((1/(n+k)))≤ln(2)  lim_(n→∞) Σsin((1/(n+k)))=ln(2)

$$\:\:\:\mathrm{lemna} \\ $$$$\forall\mathrm{x}>\mathrm{0} \\ $$$$\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\leqslant\mathrm{sin}\left(\mathrm{x}\right)\leqslant\mathrm{x} \\ $$$$\mathrm{proff} \\ $$$$\mathrm{since} \\ $$$$\mathrm{sin}\left(\mathrm{x}\right)=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} \mathrm{x}^{\mathrm{2k}+\mathrm{1}} }{\left(\mathrm{2k}+\mathrm{1}\right)!}=\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}+\underset{\mathrm{k}\geqslant\mathrm{2}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} \mathrm{x}^{\mathrm{2k}+\mathrm{1}} }{\left(\mathrm{2k}+\mathrm{1}\right)!}\geqslant\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}} \\ $$$$\mathrm{sin}\left(\mathrm{x}\right)=\mathrm{x}+\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} \mathrm{x}^{\mathrm{2k}+\mathrm{1}} }{\left(\mathrm{2k}+\mathrm{1}\right)!}<\mathrm{x} \\ $$$$\Rightarrow\:\:\:\:\:\:\:\:\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}<\mathrm{sin}\left(\mathrm{x}\right)<\mathrm{x} \\ $$$$\forall\mathrm{k}\in\left[\mathrm{1},\mathrm{n}\right]\:\forall\mathrm{n}\in\mathbb{N}^{\ast} \:\mathrm{we}\:\mathrm{have} \\ $$$$\frac{\mathrm{1}}{\mathrm{k}+\mathrm{n}}−\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{1}}{\mathrm{k}+\mathrm{n}}\right)^{\mathrm{3}} <\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{k}+\mathrm{n}}\right)<\frac{\mathrm{1}}{\mathrm{k}+\mathrm{n}} \\ $$$$\Rightarrow\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left\{\left(\frac{\mathrm{1}}{\mathrm{k}+\mathrm{n}}\right)−\frac{\mathrm{1}}{\mathrm{6}\left(\mathrm{k}+\mathrm{n}\right)^{\mathrm{3}} }\right\}<\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{k}+\mathrm{n}}\right)<\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}+\mathrm{n}} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}}=\mathrm{ln}\left(\mathrm{2}\right) \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{k}\right)^{\mathrm{3}} }\leqslant\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }.\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}\leqslant\frac{\mathrm{ln}\left(\mathrm{2}\right)}{\mathrm{n}^{\mathrm{2}} }\rightarrow\mathrm{0} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left\{\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}+\mathrm{n}}−\frac{\mathrm{1}}{\mathrm{6}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{k}\right)^{\mathrm{3}} }\right\}<\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\Sigma\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{k}+\mathrm{n}}\right)<\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\Sigma\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}} \\ $$$$\mathrm{ln}\left(\mathrm{2}\right)\leqslant\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}\right)\leqslant\mathrm{ln}\left(\mathrm{2}\right) \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\Sigma\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}\right)=\mathrm{ln}\left(\mathrm{2}\right) \\ $$

Commented by msup trace by abdo last updated on 15/Jan/20

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Commented by mind is power last updated on 15/Jan/20

y′re welcom

$$\mathrm{y}'\mathrm{re}\:\mathrm{welcom} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com