Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 78266 by msup trace by abdo last updated on 15/Jan/20

calculate f(a)=∫_0 ^1 ln(1−ax^3 )dx  with 0<a<1

calculatef(a)=01ln(1ax3)dx with0<a<1

Commented bymathmax by abdo last updated on 18/Jan/20

f(a) =∫_0 ^1 ln(1−(^3 (√a)x)^3 )dx =_((^3 (√a)x)=t)    ∫_0 ^((^3 (√a))) ln(1−t^3 )(dt/((^3 (√a))))  =(1/((^3 (√a)))) ∫_0 ^((^3 (√a))) ln(1−t^3 )dt  we have ln(1−u))^((1)) =−(1/(1−u))  =−Σ_(n=0) ^∞ u^n  ⇒ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) =−Σ_(n=1) ^∞  (u^n /n)  we have 0<(^3 (√a))<1 ⇒ln(1−t^3 )=−Σ_(n=1) ^∞  (t^(3n) /n) ⇒  ∫_0 ^((^3 (√a))) ln(1−t^3 )dt =−Σ_(n=1) ^∞  (1/n) ∫_0 ^((^3 (√a)))  t^(3n)  dt  =−Σ_(n=1) ^∞  (1/(n(3n+1)))[ t^(3n+1) ]_0 ^((^3 (√a)))  =−Σ_(n=1) ^∞  (((^3 (√a))a^n )/(n(3n+1))) ⇒  f(a) =−Σ_(n=1) ^∞  (a^n /(n(3n+1))) ⇒−(1/3)f(a) =Σ_(n=1) ^∞  (a^n /(3n(3n+1)))  =Σ_(n=1) ^∞ ((1/(3n))−(1/(3n+1)))a^n  =(1/3)Σ_(n=1) ^∞  (a^n /n)−Σ_(n=1) ^∞  (a^n /(3n+1))  =−(1/3)ln(1−a)−Σ_(n=1) ^∞  (a^n /(3n+1))    Σ_(n=1) ^∞  (a^n /(3n+1)) =Σ_(n=1) ^∞ ((((^3 (√a))^(3n+1) )/(3n+1)))×(1/((^3 (√a)))) =(1/((^3 (√a))))W(^3 (√a)) with  w(x)=Σ_(n=1) ^∞  (x^(3n+1) /(3n+1)) ⇒w^′ (x)=Σ_(n=1) ^∞  x^(3n)  =(1/(1−x^3 ))−1 ⇒  w(x)=∫_0 ^x ((1/(1−t^3 ))−1)dt +c =−x +∫_0 ^x  (dt/((1−t^3 ))) =−x−∫_0 ^x  (dt/(t^3 −1))  let decompose F(t) =(1/(t^3 −1)) =(1/((t−1)(t^2  +t+1)))  F(t)=(a/(t−1)) +((bt+c)/(t^2  +t +1))

f(a)=01ln(1(3ax)3)dx=(3ax)=t0(3a)ln(1t3)dt(3a) =1(3a)0(3a)ln(1t3)dtwehaveln(1u))(1)=11u =n=0unln(1u)=n=0un+1n+1=n=1unn wehave0<(3a)<1ln(1t3)=n=1t3nn 0(3a)ln(1t3)dt=n=11n0(3a)t3ndt =n=11n(3n+1)[t3n+1]0(3a)=n=1(3a)ann(3n+1) f(a)=n=1ann(3n+1)13f(a)=n=1an3n(3n+1) =n=1(13n13n+1)an=13n=1annn=1an3n+1 =13ln(1a)n=1an3n+1 n=1an3n+1=n=1((3a)3n+13n+1)×1(3a)=1(3a)W(3a)with w(x)=n=1x3n+13n+1w(x)=n=1x3n=11x31 w(x)=0x(11t31)dt+c=x+0xdt(1t3)=x0xdtt31 letdecomposeF(t)=1t31=1(t1)(t2+t+1) F(t)=at1+bt+ct2+t+1

Commented bymathmax by abdo last updated on 18/Jan/20

a =(t−1)F(t)∣_(t=1) =(1/3)  lim_(t→+∞) tF(t) =0 =a+b ⇒b =−(1/3)  F(0)=−a +c =−1 ⇒c =a−1 =(1/3)−1 =−(2/3) ⇒  F(t)=(1/(3(t−1))) −(1/3)((t+2)/(t^2  +t +1)) ⇒ ∫ F(t)dt =(1/3)ln∣t−1∣−(1/6)∫((2t+1+3)/(t^2  +t+1))dt  =(1/3)ln∣t−1∣−(1/6)ln(t^2  +t +1)−(1/2) ∫ (dt/(t^2  +t +1))  ∫  (dt/(t^2  +t +1)) =∫  (dt/((t+(1/2))^2  +(3/4))) =_(t+(1/2)=((√3)/2)u)  (4/3) ∫  (1/(u^2  +1))×((√3)/2)du  =(2/(√3)) arctan(((2t+1)/(√3))) ⇒∫_0 ^x  F(t)dt =[(1/3)ln∣t−1∣−(1/6)ln(t^2  +t +1)]_0 ^x   −(1/(√3))[ arctan(((2t+1)/(√3)))]_0 ^x =(1/3)ln∣x−1∣−(1/6)ln(x^2  +x+1)  −(1/(√3)){ arctan(((2x+1)/(√3)))−arctan((1/(√3))) ⇒  w(x)=x−(1/3)ln∣x−1∣+(1/6)ln(x^2  +x+1)+(1/(√3)){ arctan(((2x+1)/(√3)))−(π/6)}  ⇒f(a)=−(1/3)ln(1−a)−(1/((^3 (√a))))w(^3 (√a))  f(a) =−(1/3)ln(1−a)−(1/((^3 (√a)))){^3 (√a)−(1/3)ln∣^3 (√a)−1∣+(1/6)ln((^3 (√a))^2  +^3 (√a)+1)  +(1/(√3)) arctan(((2(^3 (√a))+1)/(√3)))−(π/(6(√3)))}

a=(t1)F(t)t=1=13 limt+tF(t)=0=a+bb=13 F(0)=a+c=1c=a1=131=23 F(t)=13(t1)13t+2t2+t+1F(t)dt=13lnt1162t+1+3t2+t+1dt =13lnt116ln(t2+t+1)12dtt2+t+1 dtt2+t+1=dt(t+12)2+34=t+12=32u431u2+1×32du =23arctan(2t+13)0xF(t)dt=[13lnt116ln(t2+t+1)]0x 13[arctan(2t+13)]0x=13lnx116ln(x2+x+1) 13{arctan(2x+13)arctan(13) w(x)=x13lnx1+16ln(x2+x+1)+13{arctan(2x+13)π6} f(a)=13ln(1a)1(3a)w(3a) f(a)=13ln(1a)1(3a){3a13ln3a1+16ln((3a)2+3a+1) +13arctan(2(3a)+13)π63}

Answered by mind is power last updated on 15/Jan/20

ln(1−ax^3 )=  ln(1−ax^3 )=−Σ_(k≥1) ((a^k x^(3k) )/k)  f(a)=−∫_0 ^1 Σ_(k≥1) (a^k /k).x^(3k) dx  =−Σ_(k≥1) (a^k /(k(3k+1)))  =−(1/3){Σ_(k≥1) (a^k /k)−Σ_(k≥1) (a^(3k) /(3k+1))}  =−(1/3)Σ_(k≥1) (a^k /k)+(1/3)Σ_(k≥1) (a^(3k) /(3k+1))  =((ln(1−a))/3)+(1/(3a)).Σ_(k≥1) (a^(3k+1) /(3k+1))  g(a)=Σ_(k≥1) (a^(3k+1) /(3k+1))⇒g′(a)=Σ_(k≥1) a^(3k) =(a^3 /(1−a^3 ))  g(a)=∫_0 ^a (x^3 /(1−x^3 ))dx=∫_0 ^a (−1+(1/(1−x^3 )))dx  =−a+∫_0 ^a (dx/((1−x)(1+x+x^2 )))=−a+∫_0 ^a (1/3){(1/((1−x)))+((x+2)/(1+x+x^2 ))}dx  =−a+(1/3)∫_0 ^a ((1/(1−x))+((x+(1/2))/(1+x+x^2 ))+(3/2).(1/((x+(1/2))^2 +(3/4))))dx  =−a+((ln(1−a))/3)+(1/6)ln(1+a+a^2 )+(2/3)∫_0 ^a (dx/((((2x+1)/(√3)))^2 +1))  g(a)=−a+((ln(1−a))/3)+((ln(1+a+a^2 ))/6)+(1/(√3)){arctan(((2a+1)/(√3)))−(π/6)}  f(a)=((ln(1−a))/3)+(1/(3a))g(a)  =−(1/3)+(1/(3a))(aln(1−a)+ln(1−a))+((ln(1+a+a^2 ))/(18a))+(1/(3a(√3))){arctan(((2a+1)/(√3)))−(π/6)}

ln(1ax3)= ln(1ax3)=k1akx3kk f(a)=01k1akk.x3kdx =k1akk(3k+1) =13{k1akkk1a3k3k+1} =13k1akk+13k1a3k3k+1 =ln(1a)3+13a.k1a3k+13k+1 g(a)=k1a3k+13k+1g(a)=k1a3k=a31a3 g(a)=0ax31x3dx=0a(1+11x3)dx =a+0adx(1x)(1+x+x2)=a+0a13{1(1x)+x+21+x+x2}dx =a+130a(11x+x+121+x+x2+32.1(x+12)2+34)dx =a+ln(1a)3+16ln(1+a+a2)+230adx(2x+13)2+1 g(a)=a+ln(1a)3+ln(1+a+a2)6+13{arctan(2a+13)π6} f(a)=ln(1a)3+13ag(a) =13+13a(aln(1a)+ln(1a))+ln(1+a+a2)18a+13a3{arctan(2a+13)π6}

Commented bymsup trace by abdo last updated on 15/Jan/20

thank you sir.

thankyousir.

Commented bymind is power last updated on 15/Jan/20

y′re welcom

yrewelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com