Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 78271 by msup trace by abdo last updated on 15/Jan/20

calculate A_θ  =∫_0 ^(π/2)   (dx/(2+cosθ sinx))  −π<θ<π

$${calculate}\:{A}_{\theta} \:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{2}+{cos}\theta\:{sinx}} \\ $$ $$−\pi<\theta<\pi \\ $$

Commented bymathmax by abdo last updated on 19/Jan/20

 A(θ)=∫_0 ^(π/2)  (dx/(2 +cosθ sinx)) ⇒A(θ)=_(tan((x/2))=t)   ∫_0 ^(1 )  ((2dt)/((1+t^2 )(2+cosθ((2t)/(1+t^2 )))))  =∫_0 ^1  ((2dt)/(2+2t^2 +2t cosθ)) =∫_0 ^1  (dt/(t^2  +t cosθ +1)) =∫_0 ^1  (dt/(t^2  +2t((cosθ)/2) +((cos^2 θ)/4) +1−((cos^2 θ)/4)))  =∫_0 ^1  (dt/((t+((cosθ)/2))^2  +((4−cos^2 θ)/4))) =_(t+((cosθ)/2)=((√(4−cos^2 θ))/2)u ⇒u=((2t+cosθ)/(√(4−cos^2 θ))))   =∫_((cosθ)/(√(4−cos^2 θ))) ^((2+cosθ)/(√(4−cos^2 θ)))      (1/(((4−cos^2 θ)/4)(1+u^2 )))×((√(4−cos^2 θ))/2)du  =2 ∫_((cosθ)/(√(4−cos^2 θ))) ^((2+cosθ)/(√(4−cos^2 θ)))     (du/(1+u^2 )) =2 [arctan(u)]_((cosθ)/(√(4−cos^2 θ))) ^((2+cosθ)/(√(4−cos^2 θ)))   =2{ arctan(((2+cosθ)/(√(4−cos^2 θ))))−arctan(((cosθ)/(√(4−cos^2 θ))))}.

$$\:{A}\left(\theta\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{\mathrm{2}\:+{cos}\theta\:{sinx}}\:\Rightarrow{A}\left(\theta\right)=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}\:} \:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{2}+{cos}\theta\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)} \\ $$ $$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2}{dt}}{\mathrm{2}+\mathrm{2}{t}^{\mathrm{2}} +\mathrm{2}{t}\:{cos}\theta}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{{t}^{\mathrm{2}} \:+{t}\:{cos}\theta\:+\mathrm{1}}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}{t}\frac{{cos}\theta}{\mathrm{2}}\:+\frac{{cos}^{\mathrm{2}} \theta}{\mathrm{4}}\:+\mathrm{1}−\frac{{cos}^{\mathrm{2}} \theta}{\mathrm{4}}} \\ $$ $$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{\left({t}+\frac{{cos}\theta}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{4}−{cos}^{\mathrm{2}} \theta}{\mathrm{4}}}\:=_{{t}+\frac{{cos}\theta}{\mathrm{2}}=\frac{\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}{\mathrm{2}}{u}\:\Rightarrow{u}=\frac{\mathrm{2}{t}+{cos}\theta}{\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} \\ $$ $$=\int_{\frac{{cos}\theta}{\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} ^{\frac{\mathrm{2}+{cos}\theta}{\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} \:\:\:\:\:\frac{\mathrm{1}}{\frac{\mathrm{4}−{cos}^{\mathrm{2}} \theta}{\mathrm{4}}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}×\frac{\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}{\mathrm{2}}{du} \\ $$ $$=\mathrm{2}\:\int_{\frac{{cos}\theta}{\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} ^{\frac{\mathrm{2}+{cos}\theta}{\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} \:\:\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:=\mathrm{2}\:\left[{arctan}\left({u}\right)\right]_{\frac{{cos}\theta}{\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} ^{\frac{\mathrm{2}+{cos}\theta}{\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}} \\ $$ $$=\mathrm{2}\left\{\:{arctan}\left(\frac{\mathrm{2}+{cos}\theta}{\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}\right)−{arctan}\left(\frac{{cos}\theta}{\sqrt{\mathrm{4}−{cos}^{\mathrm{2}} \theta}}\right)\right\}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com