Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 78276 by msup trace by abdo last updated on 15/Jan/20

find I_n =∫∫_([1,n]^2 )    (√(x^2 +y^2 ))ln(x^2 +y^2 )dxdy

$${find}\:{I}_{{n}} =\int\int_{\left[\mathrm{1},{n}\right]^{\mathrm{2}} } \:\:\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{ln}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdy} \\ $$

Commented by mathmax by abdo last updated on 17/Jan/20

let consider the diffeomorphism  (r,θ)→(x,y)=(rcosθ,rsinθ)  we have 1≤x≤n and 1≤y≤n ⇒2≤x^2  +y^2 ≤2n^2  ⇒(√2)≤r≤n(√2)  and 0≤θ≤(π/2) ⇒ I_n =∫_0 ^(π/2) ∫_(√2) ^(n(√2)) rln(r^2 )rdr dθ  =π ∫_(√2) ^(n(√2)) r^2 ln(r)dr  and by parts ∫_(√2) ^(n(√2)) r^2 ln(r)dr  =[(r^3 /3)ln(r)]_(√2) ^(n(√2))  −∫_(√2) ^(n(√2)) (r^3 /3)(dr/r) =(1/3)(2(√2)n^3 ln(n(√2))−((2(√2))/3)ln((√2)))  −(1/3)∫_(√2) ^(n(√2))  r^2 dr =((2(√2))/3){ n^3 ln(n(√2))−ln((√2))}−(1/9)[r^3 ]_(√2) ^(n(√2))  ⇒  I_n =((2(√2))/3){n^3 ln(n(√2))−ln((√2))}−(1/9){2(√2)n^3 −2(√2)}

$${let}\:{consider}\:{the}\:{diffeomorphism}\:\:\left({r},\theta\right)\rightarrow\left({x},{y}\right)=\left({rcos}\theta,{rsin}\theta\right) \\ $$$${we}\:{have}\:\mathrm{1}\leqslant{x}\leqslant{n}\:{and}\:\mathrm{1}\leqslant{y}\leqslant{n}\:\Rightarrow\mathrm{2}\leqslant{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\mathrm{2}{n}^{\mathrm{2}} \:\Rightarrow\sqrt{\mathrm{2}}\leqslant{r}\leqslant{n}\sqrt{\mathrm{2}} \\ $$$${and}\:\mathrm{0}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}}\:\Rightarrow\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\sqrt{\mathrm{2}}} ^{{n}\sqrt{\mathrm{2}}} {rln}\left({r}^{\mathrm{2}} \right){rdr}\:{d}\theta \\ $$$$=\pi\:\int_{\sqrt{\mathrm{2}}} ^{{n}\sqrt{\mathrm{2}}} {r}^{\mathrm{2}} {ln}\left({r}\right){dr}\:\:{and}\:{by}\:{parts}\:\int_{\sqrt{\mathrm{2}}} ^{{n}\sqrt{\mathrm{2}}} {r}^{\mathrm{2}} {ln}\left({r}\right){dr} \\ $$$$=\left[\frac{{r}^{\mathrm{3}} }{\mathrm{3}}{ln}\left({r}\right)\right]_{\sqrt{\mathrm{2}}} ^{{n}\sqrt{\mathrm{2}}} \:−\int_{\sqrt{\mathrm{2}}} ^{{n}\sqrt{\mathrm{2}}} \frac{{r}^{\mathrm{3}} }{\mathrm{3}}\frac{{dr}}{{r}}\:=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{2}\sqrt{\mathrm{2}}{n}^{\mathrm{3}} {ln}\left({n}\sqrt{\mathrm{2}}\right)−\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}{ln}\left(\sqrt{\mathrm{2}}\right)\right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{3}}\int_{\sqrt{\mathrm{2}}} ^{{n}\sqrt{\mathrm{2}}} \:{r}^{\mathrm{2}} {dr}\:=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\left\{\:{n}^{\mathrm{3}} {ln}\left({n}\sqrt{\mathrm{2}}\right)−{ln}\left(\sqrt{\mathrm{2}}\right)\right\}−\frac{\mathrm{1}}{\mathrm{9}}\left[{r}^{\mathrm{3}} \right]_{\sqrt{\mathrm{2}}} ^{{n}\sqrt{\mathrm{2}}} \:\Rightarrow \\ $$$${I}_{{n}} =\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\left\{{n}^{\mathrm{3}} {ln}\left({n}\sqrt{\mathrm{2}}\right)−{ln}\left(\sqrt{\mathrm{2}}\right)\right\}−\frac{\mathrm{1}}{\mathrm{9}}\left\{\mathrm{2}\sqrt{\mathrm{2}}{n}^{\mathrm{3}} −\mathrm{2}\sqrt{\mathrm{2}}\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com