All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 78284 by msup trace by abdo last updated on 15/Jan/20
calculate∫∫Dxyx2+2y2dxdyD={(x,y)/0⩽x⩽1and0⩽y⩽1−x2}
Commented by abdomathmax last updated on 17/Jan/20
I=∫∫Dxyx2+2y2dxdy⇒I=∫01(∫01−x2yx2+2y2dy)xdxbut∫01−x2yx2+2y2dy=[16(x2+2y2)32]01−x2=16{(x2+(x2+2−2x2)32−x3}=16{(x2−x3+(2−x2)32}⇒6I=∫01x(x2−x3+(2−x2)32)dx=∫01(x3−x4)dx+∫01x(2−x2)32dx=[x44−x55]01+∫01x(2−x2)32dx=120+∫01x(2−x2)32dxwehave∫01x(2−x2)32dx=x=2sint∫0π42sint(2−2sin2t)322costdt=2×232∫0π4sintcos4tdt=252[−15cos5t]0π4=−425((12)5−1)=−425(142−1)=−15+425⇒6I=120−15+425=−320+425⇒I=−140+2215
Terms of Service
Privacy Policy
Contact: info@tinkutara.com