Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 78286 by msup trace by abdo last updated on 15/Jan/20

find A_n =∫∫_([0,n[)   e^(−(x^2 +3y^2 )) sin(x^2 +3y^2 )dxdy  and lim_(n→+∞)  A_n   find nature of the serie Σn A_n

findAn=[0,n[e(x2+3y2)sin(x2+3y2)dxdyandlimn+AnfindnatureoftheserieΣnAn

Commented by mathmax by abdo last updated on 16/Jan/20

changement x=rcosθ  and y =(r/(√3))sinθ   give x^2 +3y^2 =r^2   0≤x≤n and 0≤y≤n ⇒0≤x^2  +y^2 ≤2n^2  ⇒0≤r≤n(√2)  θ ∈[0,(π/2)]   diffemorphisme is (r,θ)→(x,y)=(ϕ_1 ,ϕ_2 )(rcosθ,(r/(√3))sinθ)  M_j (ϕ) = ((((∂ϕ_1 /∂r)           (∂ϕ_1 /∂θ))),(((∂ϕ_2 /∂r)              (∂ϕ_2 /∂θ))) )    = (((cosθ            −rsinθ    )),((((sinθ)/(√3))                   (r/(√3))cosθ)) )  ⇒det(M_j ) =(r/(√3)) ⇒ A_n =∫_0 ^(π/2) ∫_0 ^(n(√2))  e^(−r^2 )  sin(r^2 )(r/(√3))dr dθ  =(π/(2(√3))) ∫_0 ^(n(√2))  r e^(−r^2 )  sin(r^2 )dr  by parts  u^′ =re^(−r^2 )  and v=sin(r^2 )  A_n =(π/(2(√3))){  [−(1/2)e^(−r^2 ) sin(r^2 )]_0 ^(n(√2)) −∫_0 ^(n(√2)) (−(1/2)e^(−r^2 ) ×2rcos(r^2 ))dr}  =(π/(2(√3))){−(1/2)e^(−2n^2 ) sin(2n^2 )+∫_0 ^(n(√2))   r e^(−r^2 ) cos(r^2 )dr}  =(π/(2(√3))){  −(1/2)e^(−2n^2 ) sin(2n^2 )+[−(1/2)e^(−r^2 ) cos(r^2 )]_0 ^(n(√2))   −∫_0 ^(n(√2)) (−(1/2)e^(−r^2 ) (−2r sin(r^2 ))dr  =(π/(2(√3))){−(1/2)e^(−2n^2 ) sin(2n^2 )+(1/2)−(1/2)e^(−2n^2 ) cos(2n^2 )−∫_0 ^(n(√2)) r e^(−r^2 ) sin(r^2 )dr}  ⇒2A_n =(π/(4(√3))){1−e^(−2n^2 ) sin(2n^2 )−e^(−2n^2 ) cos(2n^2 )} ⇒  A_n =(π/(8(√3))){ 1−e^(−2n^2 ) sin(2n^2 )−e^(−2n^2 ) cos(2n^2 )}  we have lim_(n→+∞)  e^(−2n^2 ) sin(2n^2 )=lim_(n→+∞)  e^(−2n^2 ) cos(2n^2 )=0 ⇒  lim_(n→+∞)  A_n =(π/(8(√3)))

changementx=rcosθandy=r3sinθgivex2+3y2=r20xnand0yn0x2+y22n20rn2θ[0,π2]diffemorphismeis(r,θ)(x,y)=(φ1,φ2)(rcosθ,r3sinθ)Mj(φ)=(φ1rφ1θφ2rφ2θ)=(cosθrsinθsinθ3r3cosθ)det(Mj)=r3An=0π20n2er2sin(r2)r3drdθ=π230n2rer2sin(r2)drbypartsu=rer2andv=sin(r2)An=π23{[12er2sin(r2)]0n20n2(12er2×2rcos(r2))dr}=π23{12e2n2sin(2n2)+0n2rer2cos(r2)dr}=π23{12e2n2sin(2n2)+[12er2cos(r2)]0n20n2(12er2(2rsin(r2))dr=π23{12e2n2sin(2n2)+1212e2n2cos(2n2)0n2rer2sin(r2)dr}2An=π43{1e2n2sin(2n2)e2n2cos(2n2)}An=π83{1e2n2sin(2n2)e2n2cos(2n2)}wehavelimn+e2n2sin(2n2)=limn+e2n2cos(2n2)=0limn+An=π83

Terms of Service

Privacy Policy

Contact: info@tinkutara.com