All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 78289 by ajfour last updated on 15/Jan/20
Commented by ajfour last updated on 15/Jan/20
Findθ,givenα.
Answered by mr W last updated on 15/Jan/20
R=radius2Rcosαcosθsin(2θ+α)=Rsinθsin(2θ+α)cosα=2sinθcosθsin(2θ)cosα+cos(2θ)sinαcosα=2tanθsin(2θ)+tanαcos(2θ)=2tanθtanα(2cos2θ−1)=2tanθ(1−cos2θ)tanα(21+tan2θ−1)=2tanθ(1−11+tan2θ)tanα(1−tan2θ1+tan2θ)=2tanθ(tan2θ1+tan2θ)tanα(1−tan2θ)=2tan3θ⇒1tan3θ−1tanθ−2tanα=0lett=1tanθ,a=1tanα⇒t3−t−2a=0⇒t=a2−127+a3−a2−127−a3⇒1tanθ=1tan2α−127+1tanα3−1tan2α−127−1tanα3⇒θ=π2−tan−1(1tan2α−127+1tanα3−1tan2α−127−1tanα3)
Commented by ajfour last updated on 16/Jan/20
ThankyouSir,butsoonIamgoingtofindawayoutofthiscumbersomeanswer.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com