Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 78289 by ajfour last updated on 15/Jan/20

Commented by ajfour last updated on 15/Jan/20

Find θ , given α.

$${Find}\:\theta\:,\:{given}\:\alpha. \\ $$

Answered by mr W last updated on 15/Jan/20

R=radius  ((2R cos α)/(cos θ sin (2θ+α)))=(R/(sin θ))  ((sin (2θ+α))/(cos α))=((2 sin θ)/(cos θ))  ((sin (2θ) cos α+cos (2θ) sin α)/(cos α))=2 tan θ  sin (2θ)+tan α cos (2θ)=2 tan θ  tan α(2 cos^2  θ−1)=2 tan θ (1−cos^2  θ)  tan α((2/(1+tan^2  θ))−1)=2 tan θ (1−(1/(1+tan^2  θ)))  tan α(((1−tan^2  θ)/(1+tan^2  θ)))=2 tan θ (((tan^2  θ)/(1+tan^2  θ)))  tan α(1−tan^2  θ)=2 tan^3  θ  ⇒(1/(tan^3  θ))−(1/(tan θ))−(2/(tan α))=0  let t=(1/(tan θ)), a=(1/(tan α))  ⇒t^3 −t−2a=0  ⇒t=(((√(a^2 −(1/(27))))+a))^(1/3) −(((√(a^2 −(1/(27))))−a))^(1/3)   ⇒(1/(tan θ))=(((√((1/(tan^2  α))−(1/(27))))+(1/(tan α))))^(1/3) −(((√((1/(tan^2  α))−(1/(27))))−(1/(tan α))))^(1/3)   ⇒θ=(π/2)−tan^(−1) ((((√((1/(tan^2  α))−(1/(27))))+(1/(tan α))))^(1/3) −(((√((1/(tan^2  α))−(1/(27))))−(1/(tan α))))^(1/3) )

$${R}={radius} \\ $$$$\frac{\mathrm{2}{R}\:\mathrm{cos}\:\alpha}{\mathrm{cos}\:\theta\:\mathrm{sin}\:\left(\mathrm{2}\theta+\alpha\right)}=\frac{{R}}{\mathrm{sin}\:\theta} \\ $$$$\frac{\mathrm{sin}\:\left(\mathrm{2}\theta+\alpha\right)}{\mathrm{cos}\:\alpha}=\frac{\mathrm{2}\:\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta} \\ $$$$\frac{\mathrm{sin}\:\left(\mathrm{2}\theta\right)\:\mathrm{cos}\:\alpha+\mathrm{cos}\:\left(\mathrm{2}\theta\right)\:\mathrm{sin}\:\alpha}{\mathrm{cos}\:\alpha}=\mathrm{2}\:\mathrm{tan}\:\theta \\ $$$$\mathrm{sin}\:\left(\mathrm{2}\theta\right)+\mathrm{tan}\:\alpha\:\mathrm{cos}\:\left(\mathrm{2}\theta\right)=\mathrm{2}\:\mathrm{tan}\:\theta \\ $$$$\mathrm{tan}\:\alpha\left(\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{1}\right)=\mathrm{2}\:\mathrm{tan}\:\theta\:\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\theta\right) \\ $$$$\mathrm{tan}\:\alpha\left(\frac{\mathrm{2}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta}−\mathrm{1}\right)=\mathrm{2}\:\mathrm{tan}\:\theta\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta}\right) \\ $$$$\mathrm{tan}\:\alpha\left(\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\theta}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta}\right)=\mathrm{2}\:\mathrm{tan}\:\theta\:\left(\frac{\mathrm{tan}^{\mathrm{2}} \:\theta}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta}\right) \\ $$$$\mathrm{tan}\:\alpha\left(\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\theta\right)=\mathrm{2}\:\mathrm{tan}^{\mathrm{3}} \:\theta \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{3}} \:\theta}−\frac{\mathrm{1}}{\mathrm{tan}\:\theta}−\frac{\mathrm{2}}{\mathrm{tan}\:\alpha}=\mathrm{0} \\ $$$${let}\:{t}=\frac{\mathrm{1}}{\mathrm{tan}\:\theta},\:{a}=\frac{\mathrm{1}}{\mathrm{tan}\:\alpha} \\ $$$$\Rightarrow{t}^{\mathrm{3}} −{t}−\mathrm{2}{a}=\mathrm{0} \\ $$$$\Rightarrow{t}=\sqrt[{\mathrm{3}}]{\sqrt{{a}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{27}}}+{a}}−\sqrt[{\mathrm{3}}]{\sqrt{{a}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{27}}}−{a}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{tan}\:\theta}=\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\alpha}−\frac{\mathrm{1}}{\mathrm{27}}}+\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}}−\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\alpha}−\frac{\mathrm{1}}{\mathrm{27}}}−\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}} \\ $$$$\Rightarrow\theta=\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \left(\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\alpha}−\frac{\mathrm{1}}{\mathrm{27}}}+\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}}−\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\alpha}−\frac{\mathrm{1}}{\mathrm{27}}}−\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}}\right) \\ $$

Commented by ajfour last updated on 16/Jan/20

Thank you Sir, but soon  I am going to find a way out  of this cumbersome answer.

$${Thank}\:{you}\:{Sir},\:{but}\:{soon} \\ $$$${I}\:{am}\:{going}\:{to}\:{find}\:{a}\:{way}\:{out} \\ $$$${of}\:{this}\:{cumbersome}\:{answer}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com