All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 78311 by mathocean1 last updated on 15/Jan/20
Showthat3+sin2x−2cos2x1+3sin2x−cos2x=25(2+1tanx)
Commented by jagoll last updated on 16/Jan/20
3+2sinxcosx−2(1−2sin2x)1+3sin2x−(1−2sin2x)=1+2sinxcosx+4sin2x5sin2x=15cosec2x+25cotx+45=15{cosec2x+2cotx+4}
Commented by john santu last updated on 16/Jan/20
15{1+cot2x+2cotx+4}=15{1tan2x+2tanx+5}=1+15tan2x+25tanx
Answered by mind is power last updated on 15/Jan/20
cos(2x)=−2sin2(x)+1sin(2x)=2sin(x)cos(x)⇒3+sin(2x)−2cos(2x)1+3sin2(x)−cos(2x)=3+2sin(x)cos(x)+4sin2(x)−21+3sin2(x)+2sin2(x)−1=4sin2(x)+2sin(x)cos(x)+15sin2(x)=45+2sin(x)cos(x)5sin2(x)+15sin2(x)=45+2cos(x)5sin(x)+15sin2(x)=45+25tan(x)+sin2(x)+cos2(x)5sin2(x)=45+25tan(x)+15+15tan2(x)=1+25tan(x)+15tan2(x)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com