Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 78340 by loveineq. last updated on 16/Jan/20

Let  a,b,c > 0  and  c^2  = ((ab+bc+ca)/3) . Prove that                 ((a^3 +b^3 −2c^3 )/(a^3 +b^3 +c^3 )) ≤ 3(((a^2 +b^2 −2c^2 )/(a^2 +b^2 +c^2 )))

Leta,b,c>0andc2=ab+bc+ca3.Provethat a3+b32c3a3+b3+c33(a2+b22c2a2+b2+c2)

Answered by MJS last updated on 16/Jan/20

(a^3 +b^3 −2c^3 )(a^2 +b^2 +c^2 )≤3(a^2 +b^2 −2c^2 )(a^3 +b^3 +c^3 )  ⇒  2(a^5 +b^5 )−7c^2 (a^3 +b^3 )+5c^3 (a^2 +b^2 )+2a^2 b^2 (a+b)−4c^5 ≥0  let a=pc∧b=qc  (2(p^5 +q^5 )+2p^2 q^2 (p+q)−7(p^3 +q^3 )+5(p^2 +q^2 )−4)c^5 ≥0  2(p^5 +q^5 )+2p^2 q^2 (p+q)−7(p^3 +q^3 )+5(p^2 +q^2 )−4≥0    3c^2 =ab+ac+bc  3c^2 =(p+pq+q)c^2  ⇒ q=((3−p)/(1+p))    ((2p^(10) +10p^9 +15p^8 −18p^7 −33p^6 −12p^5 −33p^4 −90p^3 +735p^2 −914p+338)/((p+1)^5 ))≥0  (p−1)^2 (2p^8 +14p^7 +41p^6 +50p^5 +26p^4 −10p^3 −79p^2 −238p+338)≥0  no other real linear factors  with p=1 lhs=0  with p<>1 lhs>0  ⇒ proven

(a3+b32c3)(a2+b2+c2)3(a2+b22c2)(a3+b3+c3) 2(a5+b5)7c2(a3+b3)+5c3(a2+b2)+2a2b2(a+b)4c50 leta=pcb=qc (2(p5+q5)+2p2q2(p+q)7(p3+q3)+5(p2+q2)4)c50 2(p5+q5)+2p2q2(p+q)7(p3+q3)+5(p2+q2)40 3c2=ab+ac+bc 3c2=(p+pq+q)c2q=3p1+p 2p10+10p9+15p818p733p612p533p490p3+735p2914p+338(p+1)50 (p1)2(2p8+14p7+41p6+50p5+26p410p379p2238p+338)0 nootherreallinearfactors withp=1lhs=0 withp<>1lhs>0 proven

Answered by loveineq. last updated on 16/Jan/20

Thanks MJS

ThanksMJS

Terms of Service

Privacy Policy

Contact: info@tinkutara.com