All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 78340 by loveineq. last updated on 16/Jan/20
Leta,b,c>0andc2=ab+bc+ca3.Provethat a3+b3−2c3a3+b3+c3⩽3(a2+b2−2c2a2+b2+c2)
Answered by MJS last updated on 16/Jan/20
(a3+b3−2c3)(a2+b2+c2)⩽3(a2+b2−2c2)(a3+b3+c3) ⇒ 2(a5+b5)−7c2(a3+b3)+5c3(a2+b2)+2a2b2(a+b)−4c5⩾0 leta=pc∧b=qc (2(p5+q5)+2p2q2(p+q)−7(p3+q3)+5(p2+q2)−4)c5⩾0 2(p5+q5)+2p2q2(p+q)−7(p3+q3)+5(p2+q2)−4⩾0 3c2=ab+ac+bc 3c2=(p+pq+q)c2⇒q=3−p1+p 2p10+10p9+15p8−18p7−33p6−12p5−33p4−90p3+735p2−914p+338(p+1)5⩾0 (p−1)2(2p8+14p7+41p6+50p5+26p4−10p3−79p2−238p+338)⩾0 nootherreallinearfactors withp=1lhs=0 withp<>1lhs>0 ⇒proven
Answered by loveineq. last updated on 16/Jan/20
ThanksMJS
Terms of Service
Privacy Policy
Contact: info@tinkutara.com