Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 78351 by loveineq. last updated on 16/Jan/20

Let  a,b,c ∈ R^+   and  (a+b)(b+c) = 1 , where  0 <b≤ 1 .  Prove that  ∣a−b∣∣b−c∣ ≥ ((∣(√a)−(√b)∣∣(√b)−(√c)∣)/2) .

$$\mathrm{Let}\:\:{a},{b},{c}\:\in\:\mathrm{R}^{+} \:\:\mathrm{and}\:\:\left({a}+{b}\right)\left({b}+{c}\right)\:=\:\mathrm{1}\:,\:\mathrm{where}\:\:\mathrm{0}\:<{b}\leqslant\:\mathrm{1}\:. \\ $$ $$\mathrm{Prove}\:\mathrm{that}\:\:\mid{a}−{b}\mid\mid{b}−{c}\mid\:\geqslant\:\frac{\mid\sqrt{{a}}−\sqrt{{b}}\mid\mid\sqrt{{b}}−\sqrt{{c}}\mid}{\mathrm{2}}\:. \\ $$

Commented byloveineq. last updated on 19/Jan/20

More stronger is  ∣a−b∣∣b−c∣ ≥ ∣(√a)−(√b)∣∣(√b)−(√c)∣ .

$$\mathrm{More}\:\mathrm{stronger}\:\mathrm{is}\:\:\mid{a}−{b}\mid\mid{b}−{c}\mid\:\geqslant\:\mid\sqrt{{a}}−\sqrt{{b}}\mid\mid\sqrt{{b}}−\sqrt{{c}}\mid\:. \\ $$

Answered by mind is power last updated on 16/Jan/20

x−y=((√x)−(√y))((√x)+(√y))  ⇒∣a−b∣∣b−c∣=∣(√a)−(√b)∣∣(√b)−(√c)∣((√a)+(√b))((√b)+(√c))  (√x)+(√y)  ≥((√(x+y))/(√2))  proof⇔2(x+y+2(√(xy)))≥x+y  ⇔x+y+4(√(xy))≥0 True  ((√a)+(√b))((√b)+(√c))≥(((√(a+b)).(√(b+c)))/2)=((√((a+b)(b+c)))/2)=(1/2)  ⇒∣(√a)−(√b)∣∣(√b)−(√c)∣((√a)+(√b))((√b)+(√c))≥((∣(√a)−(√(b∣))∣(√b)−(√c)∣)/2)

$$\mathrm{x}−\mathrm{y}=\left(\sqrt{\mathrm{x}}−\sqrt{\mathrm{y}}\right)\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}}\right) \\ $$ $$\Rightarrow\mid\mathrm{a}−\mathrm{b}\mid\mid\mathrm{b}−\mathrm{c}\mid=\mid\sqrt{\mathrm{a}}−\sqrt{\mathrm{b}}\mid\mid\sqrt{\mathrm{b}}−\sqrt{\mathrm{c}}\mid\left(\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}\right)\left(\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}}\right) \\ $$ $$\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}}\:\:\geqslant\frac{\sqrt{\mathrm{x}+\mathrm{y}}}{\sqrt{\mathrm{2}}}\:\:\mathrm{proof}\Leftrightarrow\mathrm{2}\left(\mathrm{x}+\mathrm{y}+\mathrm{2}\sqrt{\mathrm{xy}}\right)\geqslant\mathrm{x}+\mathrm{y} \\ $$ $$\Leftrightarrow\mathrm{x}+\mathrm{y}+\mathrm{4}\sqrt{\mathrm{xy}}\geqslant\mathrm{0}\:\mathrm{True} \\ $$ $$\left(\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}\right)\left(\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}}\right)\geqslant\frac{\sqrt{\mathrm{a}+\mathrm{b}}.\sqrt{\mathrm{b}+\mathrm{c}}}{\mathrm{2}}=\frac{\sqrt{\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{b}+\mathrm{c}\right)}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ $$\Rightarrow\mid\sqrt{\mathrm{a}}−\sqrt{\mathrm{b}}\mid\mid\sqrt{\mathrm{b}}−\sqrt{\mathrm{c}}\mid\left(\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}\right)\left(\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}}\right)\geqslant\frac{\mid\sqrt{\mathrm{a}}−\sqrt{\mathrm{b}\mid}\mid\sqrt{\mathrm{b}}−\sqrt{\mathrm{c}}\mid}{\mathrm{2}} \\ $$

Answered by loveineq. last updated on 16/Jan/20

Thanks sir

$$\mathrm{Thanks}\:\mathrm{sir} \\ $$

Commented bymind is power last updated on 19/Jan/20

y′re Welcom

$$\mathrm{y}'\mathrm{re}\:\mathrm{Welcom} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com