Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 78392 by jagoll last updated on 17/Jan/20

Answered by john santu last updated on 17/Jan/20

let h= cos x(√(cos 2x))((cos 3x))^(1/(  3))  ((cos 4x))^(1/4) ... ((cos nx))^(1/n)   ln(h)= ln(cos x)+(1/2)ln(cos 2x)+(1/3)ln(cos 3x)+...+(1/n)ln(cos nx)  (dh/dx)=((−sin x)/(cos x))−((sin 2x)/(cos 2x))−((sin 3x)/(cos 3x))−...−((sin nx)/(cos nx))  now we use L′Hopital rule  lim_(x→0)  ((tan x+tan 2x+tan 3x+...+tan nx)/(2x))=  ((1+2+3+4+...+n)/2)= ((n(n+1))/4)

$${let}\:{h}=\:\mathrm{cos}\:{x}\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\sqrt[{\:\:\mathrm{3}}]{\mathrm{cos}\:\mathrm{3}{x}}\:\sqrt[{\mathrm{4}}]{\mathrm{cos}\:\mathrm{4}{x}}...\:\sqrt[{{n}}]{\mathrm{cos}\:{nx}} \\ $$$${ln}\left({h}\right)=\:{ln}\left(\mathrm{cos}\:{x}\right)+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{cos}\:\mathrm{2}{x}\right)+\frac{\mathrm{1}}{\mathrm{3}}{ln}\left(\mathrm{cos}\:\mathrm{3}{x}\right)+...+\frac{\mathrm{1}}{{n}}{ln}\left(\mathrm{cos}\:{nx}\right) \\ $$$$\frac{{dh}}{{dx}}=\frac{−\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}−\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{cos}\:\mathrm{2}{x}}−\frac{\mathrm{sin}\:\mathrm{3}{x}}{\mathrm{cos}\:\mathrm{3}{x}}−...−\frac{\mathrm{sin}\:{nx}}{\mathrm{cos}\:{nx}} \\ $$$${now}\:{we}\:{use}\:{L}'{Hopital}\:{rule} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:{x}+\mathrm{tan}\:\mathrm{2}{x}+\mathrm{tan}\:\mathrm{3}{x}+...+\mathrm{tan}\:{nx}}{\mathrm{2}{x}}= \\ $$$$\frac{\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+...+{n}}{\mathrm{2}}=\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{4}} \\ $$

Commented by jagoll last updated on 17/Jan/20

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com