Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 78425 by arkanmath7@gmail.com last updated on 17/Jan/20

how to solve  find inf and sup of A    1. A={(m/n)+((4n)/m)   m,n ∈N}  2. A={((mn)/(4m^2  + n^2 ))  m∈Z,n ∈N}  3. A={(m/(∣m∣ + n))  m∈Z,n ∈N}

howtosolvefindinfandsupofA1.A={mn+4nmm,nN}2.A={mn4m2+n2mZ,nN}3.A={mm+nmZ,nN}

Answered by MJS last updated on 17/Jan/20

(d/dm)[(m/n)+((4n)/m)]=(1/n)−((4n)/m^2 )=0 ⇒ m=±2n  (d^2 /dm^2 )[(m/n)+((4n)/m)]=((8n)/m^3 )= { ((−(1/n^2 ); m=−2n)),(((1/n^2 ); m=+2n)) :}  local max at m=−2n but m, n ∈N ⇒        ⇒ A_(max) =+∞ [m=1∧n→+∞ or n=1∧m→+∞ ⇒ A→+∞]  local min at m=2n∧m, n ∈N ⇒ A_(min) =4

ddm[mn+4nm]=1n4nm2=0m=±2nd2dm2[mn+4nm]=8nm3={1n2;m=2n1n2;m=+2nlocalmaxatm=2nbutm,nNAmax=+[m=1n+orn=1m+A+]localminatm=2nm,nNAmin=4

Commented by MJS last updated on 17/Jan/20

because at a max the 2^(nd)  derivate is smaller  than 0

becauseatamaxthe2ndderivateissmallerthan0

Commented by arkanmath7@gmail.com last updated on 17/Jan/20

why did you take local max at  m=−2n not at m=2n??

whydidyoutakelocalmaxatm=2nnotatm=2n??

Commented by arkanmath7@gmail.com last updated on 17/Jan/20

thank you so much sir

thankyousomuchsir

Answered by MJS last updated on 17/Jan/20

(d/dm)[((mn)/(4m^2 +n^2 ))]=−((n(4m^2 −n^2 ))/((4m^2 +n^2 )^2 ))=0 ⇒ m=±(n/2)  (d^2 /dm^2 )[((mn)/(4m^2 +n^2 ))]=((8mn(4m^2 −3n^2 ))/((4m^2 +n^2 )^3 ))= { (((1/n^2 ); m=−(n/2))),((−(1/n^2 ); m=(n/2))) :}  min at m=−(n/2); A=−(1/4)  max at m=(n/2); A=(1/4)  try  ((mn)/(4m^2 +n^2 ))<−(1/4)  4mn<−4m^2 −n^2   4m^2 +4mn+n^2 <0  (2m+n)^2 <0 false  ((mn)/(4m^2 +n^2 ))>(1/4) leads to (2m−n)^2 <0 ⇒ false

ddm[mn4m2+n2]=n(4m2n2)(4m2+n2)2=0m=±n2d2dm2[mn4m2+n2]=8mn(4m23n2)(4m2+n2)3={1n2;m=n21n2;m=n2minatm=n2;A=14maxatm=n2;A=14trymn4m2+n2<144mn<4m2n24m2+4mn+n2<0(2m+n)2<0falsemn4m2+n2>14leadsto(2mn)2<0false

Answered by MJS last updated on 17/Jan/20

−1<(m/(∣m∣+n))<+1

1<mm+n<+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com