Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 78427 by Chi Mes Try last updated on 17/Jan/20

please i need it urgently    show that the midpoint of the hypotenuse  of a right triangle is equidistant from its vertices

$${please}\:{i}\:{need}\:{it}\:{urgently} \\ $$$$ \\ $$$${show}\:{that}\:{the}\:{midpoint}\:{of}\:{the}\:{hypotenuse} \\ $$$${of}\:{a}\:{right}\:{triangle}\:{is}\:{equidistant}\:{from}\:{its}\:{vertices} \\ $$

Answered by MJS last updated on 17/Jan/20

easy:  any right angled triangle is half a rectangle.  any rectangle has a circumcircle with center  at the intersection of the diagonals ⇒  ⇒ the vertices have the same distance from  the center

$$\mathrm{easy}: \\ $$$$\mathrm{any}\:\mathrm{right}\:\mathrm{angled}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{half}\:\mathrm{a}\:\mathrm{rectangle}. \\ $$$$\mathrm{any}\:\mathrm{rectangle}\:\mathrm{has}\:\mathrm{a}\:\mathrm{circumcircle}\:\mathrm{with}\:\mathrm{center} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{intersection}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diagonals}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{have}\:\mathrm{the}\:\mathrm{same}\:\mathrm{distance}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{center} \\ $$

Answered by $@ty@m123 last updated on 17/Jan/20

Let △ABC is right angled at B.  Let D be the mid point of AC.  Draw DE⊥BC ⇒ DE∥AB.  Converse of mid point theorem  implies that E is mid point of BC.  Now in △DBE,  DB^2 =DE^2 +EB^2   DB^2 =(((AB)/2))^2 +(((BC)/2))^2   DB^2 =(((AB^2 +BC^2 )/4))=((AC^2 )/4)  ⇒DB=((AC)/2)  ⇒DB=AD=DC  Hence the result.

$${Let}\:\bigtriangleup{ABC}\:{is}\:{right}\:{angled}\:{at}\:{B}. \\ $$$${Let}\:{D}\:{be}\:{the}\:{mid}\:{point}\:{of}\:{AC}. \\ $$$${Draw}\:{DE}\bot{BC}\:\Rightarrow\:{DE}\parallel{AB}. \\ $$$${Converse}\:{of}\:{mid}\:{point}\:{theorem} \\ $$$${implies}\:{that}\:{E}\:{is}\:{mid}\:{point}\:{of}\:{BC}. \\ $$$${Now}\:{in}\:\bigtriangleup{DBE}, \\ $$$${DB}^{\mathrm{2}} ={DE}^{\mathrm{2}} +{EB}^{\mathrm{2}} \\ $$$${DB}^{\mathrm{2}} =\left(\frac{{AB}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{BC}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${DB}^{\mathrm{2}} =\left(\frac{{AB}^{\mathrm{2}} +{BC}^{\mathrm{2}} }{\mathrm{4}}\right)=\frac{{AC}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\Rightarrow{DB}=\frac{{AC}}{\mathrm{2}} \\ $$$$\Rightarrow{DB}={AD}={DC} \\ $$$${Hence}\:{the}\:{result}. \\ $$

Commented by $@ty@m123 last updated on 17/Jan/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com