Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 78443 by Maclaurin Stickker last updated on 17/Jan/20

Answered by mr W last updated on 18/Jan/20

Commented by mr W last updated on 18/Jan/20

side length of square =a=x_0   EF=2r+((2r)/(√2))=(2+(√2))r  EB=r+(r/(tan (θ/2)))=a cos θ ⇒(a/r)=((1+(1/(tan (θ/2))))/(cos θ))  EC=r+(r/(tan ((π/4)−(θ/2))))=FB  EB=EF+FB  r+(r/(tan (θ/2)))=(2+(√2))r+r+(r/(tan ((π/4)−(θ/2))))  (1/(tan (θ/2)))=2+(√2)+(1/(tan ((π/4)−(θ/2))))  (1/(tan (θ/2)))=2+(√2)+((1+tan (θ/2))/(1−tan (θ/2)))  let t=tan (θ/2)  (1/t)−((1+t)/(1−t))=2+(√2)  (1+(√2))t^2 −(4+(√2))t+1=0  t=((4+(√2)−(√((4+(√2))^2 −4(1+(√2)))))/(2(1+(√2))))  t=tan (θ/2)=((3(√2)−2−(√(2(13−8(√2)))))/2) ⇒θ=22.96°  (x_0 /r)=(a/r)=((1+(1/(tan (θ/2))))/(cos θ))=((1+t^2 )/((1−t)t))=6.4336

sidelengthofsquare=a=x0EF=2r+2r2=(2+2)rEB=r+rtanθ2=acosθar=1+1tanθ2cosθEC=r+rtan(π4θ2)=FBEB=EF+FBr+rtanθ2=(2+2)r+r+rtan(π4θ2)1tanθ2=2+2+1tan(π4θ2)1tanθ2=2+2+1+tanθ21tanθ2lett=tanθ21t1+t1t=2+2(1+2)t2(4+2)t+1=0t=4+2(4+2)24(1+2)2(1+2)t=tanθ2=3222(1382)2θ=22.96°x0r=ar=1+1tanθ2cosθ=1+t2(1t)t=6.4336

Terms of Service

Privacy Policy

Contact: info@tinkutara.com