Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 78458 by kaivan.ahmadi last updated on 17/Jan/20

if I_n =∫_0 ^(π/4) tan^n xdx and I_n =a_n +b_n I_(n−2)  then find a_(10)

ifIn=0π4tannxdxandIn=an+bnIn2thenfinda10

Commented by kaivan.ahmadi last updated on 17/Jan/20

I_n +I_(n−2) =∫tg^n xdx+∫tg^(n−2) xdx=∫(tg^n xdx+tg^(n−2) x)dx  =∫tg^(n−2) x(tg^2 x+1)dx  u=tgx⇒du=(1+tg^2 x)dx⇒∫u^(n−2) du=  (u^(n−3) /(n−1))=((tg^(n−3) x)/(n−1))∣_0 ^(π/4) =(1/(n−1))  ⇒    I_n +I_(n−2) =(1/(n−1))  ⇒I_n =(1/(n−1))−I_(n−2) =a_n +(−1)I_(n−2) ⇒a_n =(1/(n−1))  ⇒a_(10) =(1/9)

In+In2=tgnxdx+tgn2xdx=(tgnxdx+tgn2x)dx=tgn2x(tg2x+1)dxu=tgxdu=(1+tg2x)dxun2du=un3n1=tgn3xn10π4=1n1In+In2=1n1In=1n1In2=an+(1)In2an=1n1a10=19

Commented by mathmax by abdo last updated on 17/Jan/20

I_n =∫_0 ^(π/4)  tan^n x dx ⇒ I_n =∫_0 ^(π/4) tan^(n−2) x (1+tan^2 x−1)dx  =∫_0 ^(π/4)  (1+tan^2 x)tan^(n−2) x dx−∫_0 ^(π/4)  tan^(n−2) x dx  =[(1/(n−1))tan^(n−1) x]_0 ^(π/4) −I_(n−2) =(1/(n−1)) −I_(n−2)    if n≥2 ⇒a_n =(1/(n−1))  and b_n =−1 ⇒a_(10) =(1/9)  let calculate I_n  interms of n we have  I_n +I_(n−2) =(1/(n−1)) ⇒I_(2n)  +I_(2n−2) =(1/(2n−1)) let I_(2n) =u_n  ⇒  u_n +u_(n−1) =(1/(2n−1)) ⇒Σ_(k=1) ^n (−1)^k (u_k +u_(k−1) ) =Σ_(k=1) ^n  (((−1)^k )/(2k−1)) ⇒  −(u_1 +u_0 )+u_2 +u_1  +....(−1)^n (u_n  +u_(n−1) )=Σ_(k=1) ^n  (((−1)^k )/(2k−1))  (−1)^n u_n −u_0 =Σ_(k=1) ^n (((−1)^k )/(2k−1)) ⇒(−1)^n u_n =u_0  +Σ_(k=1) ^n  (((−1)^k )/(2k−1)) ⇒  u_n =(−1)^n u_0  +(−1)^n Σ_(k=1) ^n  (((−1)^k )/(2k−1)) =(π/4)(−1)^n  +(−1)^n Σ_(k=1) ^n  (((−1)^k )/(2k−1))  ⇒I_(2n) =(π/4)(−1)^n  +(−1)^n  Σ_(k=1) ^n  (((−1)^k )/(2k−1))    let detemine I_(2n+1) ?  we have I_(2n+1) +I_(2n−1) =(1/(2n)) ⇒Σ_(k=1) ^n (−1)^k (v_k  +v_(k−1) )=Σ_(k=1) ^n  (((−1)^k )/(2k))  (v_n =I_(2n+1) ) ⇒(−1)^n v_n −v_0  =Σ_(k=1) ^n  (((−1)^k )/(2k)) ⇒  (−1)^n  v_n =v_0  +Σ_(k=1) ^n  (((−1)^k )/(2k)) ⇒  v_n =(−1)^n v_0  +(−1)^n  Σ_(k=1) ^n  (((−1)^k )/(2k))  v_0 =I_1 =∫_0 ^(π/4)  tanx dx =−∫_0 ^(π/4)  ((−sinx)/(cosx))dx =−ln∣cosx∣]_0 ^(π/4)   =−ln((1/(√2))) =(1/2)ln(2) ⇒I_(2n+1) =(−1)^n ((ln(2))/2) +(−1)^n Σ_(k=1) ^n (((−1)^k )/(2k))

In=0π4tannxdxIn=0π4tann2x(1+tan2x1)dx=0π4(1+tan2x)tann2xdx0π4tann2xdx=[1n1tann1x]0π4In2=1n1In2ifn2an=1n1andbn=1a10=19letcalculateInintermsofnwehaveIn+In2=1n1I2n+I2n2=12n1letI2n=unun+un1=12n1k=1n(1)k(uk+uk1)=k=1n(1)k2k1(u1+u0)+u2+u1+....(1)n(un+un1)=k=1n(1)k2k1(1)nunu0=k=1n(1)k2k1(1)nun=u0+k=1n(1)k2k1un=(1)nu0+(1)nk=1n(1)k2k1=π4(1)n+(1)nk=1n(1)k2k1I2n=π4(1)n+(1)nk=1n(1)k2k1letdetemineI2n+1?wehaveI2n+1+I2n1=12nk=1n(1)k(vk+vk1)=k=1n(1)k2k(vn=I2n+1)(1)nvnv0=k=1n(1)k2k(1)nvn=v0+k=1n(1)k2kvn=(1)nv0+(1)nk=1n(1)k2kv0=I1=0π4tanxdx=0π4sinxcosxdx=lncosx]0π4=ln(12)=12ln(2)I2n+1=(1)nln(2)2+(1)nk=1n(1)k2k

Terms of Service

Privacy Policy

Contact: info@tinkutara.com