All Questions Topic List
Vector Questions
Previous in All Question Next in All Question
Previous in Vector Next in Vector
Question Number 78458 by kaivan.ahmadi last updated on 17/Jan/20
ifIn=∫0π4tannxdxandIn=an+bnIn−2thenfinda10
Commented by kaivan.ahmadi last updated on 17/Jan/20
In+In−2=∫tgnxdx+∫tgn−2xdx=∫(tgnxdx+tgn−2x)dx=∫tgn−2x(tg2x+1)dxu=tgx⇒du=(1+tg2x)dx⇒∫un−2du=un−3n−1=tgn−3xn−1∣0π4=1n−1⇒In+In−2=1n−1⇒In=1n−1−In−2=an+(−1)In−2⇒an=1n−1⇒a10=19
Commented by mathmax by abdo last updated on 17/Jan/20
In=∫0π4tannxdx⇒In=∫0π4tann−2x(1+tan2x−1)dx=∫0π4(1+tan2x)tann−2xdx−∫0π4tann−2xdx=[1n−1tann−1x]0π4−In−2=1n−1−In−2ifn⩾2⇒an=1n−1andbn=−1⇒a10=19letcalculateInintermsofnwehaveIn+In−2=1n−1⇒I2n+I2n−2=12n−1letI2n=un⇒un+un−1=12n−1⇒∑k=1n(−1)k(uk+uk−1)=∑k=1n(−1)k2k−1⇒−(u1+u0)+u2+u1+....(−1)n(un+un−1)=∑k=1n(−1)k2k−1(−1)nun−u0=∑k=1n(−1)k2k−1⇒(−1)nun=u0+∑k=1n(−1)k2k−1⇒un=(−1)nu0+(−1)n∑k=1n(−1)k2k−1=π4(−1)n+(−1)n∑k=1n(−1)k2k−1⇒I2n=π4(−1)n+(−1)n∑k=1n(−1)k2k−1letdetemineI2n+1?wehaveI2n+1+I2n−1=12n⇒∑k=1n(−1)k(vk+vk−1)=∑k=1n(−1)k2k(vn=I2n+1)⇒(−1)nvn−v0=∑k=1n(−1)k2k⇒(−1)nvn=v0+∑k=1n(−1)k2k⇒vn=(−1)nv0+(−1)n∑k=1n(−1)k2kv0=I1=∫0π4tanxdx=−∫0π4−sinxcosxdx=−ln∣cosx∣]0π4=−ln(12)=12ln(2)⇒I2n+1=(−1)nln(2)2+(−1)n∑k=1n(−1)k2k
Terms of Service
Privacy Policy
Contact: info@tinkutara.com