Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 78460 by Tony Lin last updated on 17/Jan/20

Σ_(n=1) ^∞  (n^3 /3^n )=?

n=1n33n=?

Commented by mathmax by abdo last updated on 18/Jan/20

let s =Σ_(n=1) ^∞  (n^3 /3^n )  and f(x)=Σ_(n=0) ^∞ x^n   with ∣x∣<1 ⇒f(x)=(1/(1−x))  ⇒f^((1)) (x)=(1/((1−x)^2 )) =Σ_(n=1) ^∞ nx^(n−1)  ⇒(x/((x−1)^2 )) =Σ_(n=1) ^∞  nx^n  ⇒  Σ_(n=1) ^∞  n^2 x^(n−1) =((x/((x−1)^2 )))^((1)) =(((x−1)^2 −2(x−1)x)/((x−1)^4 ))  =((x−1−2x)/((x−1)^3 )) =((−x−1)/((x−1)^3 )) =((x+1)/((1−x)^3 )) ⇒  Σ_(n=1) ^∞  n^2 x^n  =((x^2 +x)/((1−x)^3 )) ⇒Σ_(n=1) ^∞ n^3 x^(n−1) =(((x^2 +x)/((1−x)^3 )))^((1))   =(((2x+1)(1−x)^3 +3(1−x)^2 (x^2 +x))/((1−x)^6 )) =(((2x+1)(1−x)+3(x^2 +x))/((1−x)^4 ))  =((2x−2x^2 +1−x +3x^2  +3x)/((1−x)^4 )) =((x^2 +4x+1)/((1−x)^4 )) ⇒Σ_(n=1) ^∞ n^3 x^n =((x^3 +4x^2 +x)/((1−x)^4 ))  ⇒s =f((1/3)) =((((1/3))^3  +4((1/3))^2  +(1/3))/((1−(1/3))^4 )) =(((1/3^3 )+(4/3^2 )+(1/3))/(2^4 /3^4 ))  =((3^4 {(1/3^3 )+(4/3^2 )+(1/3)})/(16)) =((3+36 +27)/(16)) =((39+27)/(16)) =((66)/(16)) =((33)/8)  ★ s=((33)/8)★

lets=n=1n33nandf(x)=n=0xnwithx∣<1f(x)=11xf(1)(x)=1(1x)2=n=1nxn1x(x1)2=n=1nxnn=1n2xn1=(x(x1)2)(1)=(x1)22(x1)x(x1)4=x12x(x1)3=x1(x1)3=x+1(1x)3n=1n2xn=x2+x(1x)3n=1n3xn1=(x2+x(1x)3)(1)=(2x+1)(1x)3+3(1x)2(x2+x)(1x)6=(2x+1)(1x)+3(x2+x)(1x)4=2x2x2+1x+3x2+3x(1x)4=x2+4x+1(1x)4n=1n3xn=x3+4x2+x(1x)4s=f(13)=(13)3+4(13)2+13(113)4=133+432+132434=34{133+432+13}16=3+36+2716=39+2716=6616=338s=338

Commented by Tony Lin last updated on 18/Jan/20

thanks sir

thankssir

Commented by mathmax by abdo last updated on 18/Jan/20

you are welcome

youarewelcome

Answered by mr W last updated on 17/Jan/20

1+x+x^2 +x^3 +...=(1/(1−x)) with ∣x∣<1  1+2x+3x^2 +4x^3 +...=(1/((1−x)^2 ))  x+2x^2 +3x^3 +4x^4 +...=(x/((1−x)^2 ))  1+2^2 x+3^2 x^2 +4^2 x^3 +...=(1/((1−x)^2 ))+((2x)/((1−x)^3 ))  x+2^2 x^2 +3^2 x^3 +4^2 x^4 +...=(x/((1−x)^2 ))+((2x^2 )/((1−x)^3 ))  1+2^3 x+3^3 x^2 +4^3 x^3 +...=(1/((1−x)^2 ))+((6x)/((1−x)^3 ))+((6x^2 )/((1−x)^4 ))  x+2^3 x^2 +3^3 x^3 +4^3 x^4 +...=(x/((1−x)^2 ))+((6x^2 )/((1−x)^3 ))+((6x^3 )/((1−x)^4 ))  let x=(1/3):  (1^3 /3)+(2^3 /3^2 )+(3^3 /3^3 )+(4^3 /3^4 )+...=Σ_(n=1) ^∞ (n^3 /3^n )=(1/3)×(3^2 /2^2 )+(6/3^2 )×(3^3 /2^3 )+(6/3^3 )×(3^4 /2^4 )  ⇒Σ_(n=1) ^∞ (n^3 /3^n )=((33)/8)

1+x+x2+x3+...=11xwithx∣<11+2x+3x2+4x3+...=1(1x)2x+2x2+3x3+4x4+...=x(1x)21+22x+32x2+42x3+...=1(1x)2+2x(1x)3x+22x2+32x3+42x4+...=x(1x)2+2x2(1x)31+23x+33x2+43x3+...=1(1x)2+6x(1x)3+6x2(1x)4x+23x2+33x3+43x4+...=x(1x)2+6x2(1x)3+6x3(1x)4letx=13:133+2332+3333+4334+...=n=1n33n=13×3222+632×3323+633×3424n=1n33n=338

Commented by Tony Lin last updated on 18/Jan/20

thanks sir

thankssir

Answered by mind is power last updated on 17/Jan/20

x^n .n^3   n(n−1)(n−2)=n^3 −3n^2 +2n  n^3 =n(n−1)(n−2)+n(3n−2)=n(n−1)(n−2)+3n(n−1)+n  ⇒Σ_(n≥1) n(n−1)(n−2)x^n +3Σ_(n≥1) n(n−1)x^n +Σ_(n≥1) nx^n   =x^3 Σ_(n≥2) n(n−1)(n−2)x^(n−3) +3x^2 Σ_(n≥2) n(n−1)x^(n−2) +xΣ_(n≥1) nx^(n−1)   Σ_(n≥0) x^n =(1/(1−x))  ⇒Σ_(n≥1) nx^(n−1) =(1/((1−x)^2 ))⇒Σn(n−1)(n−2)x^(n−3) =(6/((1−x)^4 ))  Σn(n−1)x^(n−2) =(2/((1−x)^3 ))  =((6x^3 )/((x−1)^4 ))+((6x^2 )/((1−x)^3 ))+(x/((1−x)^2 ))  x=3⇒((6.27)/(16))+((6.9)/(−8))+(3/4)=((162−108+12)/(16))=((66)/(16))=((33)/8)

xn.n3n(n1)(n2)=n33n2+2nn3=n(n1)(n2)+n(3n2)=n(n1)(n2)+3n(n1)+nn1n(n1)(n2)xn+3n1n(n1)xn+n1nxn=x3n2n(n1)(n2)xn3+3x2n2n(n1)xn2+xn1nxn1n0xn=11xn1nxn1=1(1x)2Σn(n1)(n2)xn3=6(1x)4Σn(n1)xn2=2(1x)3=6x3(x1)4+6x2(1x)3+x(1x)2x=36.2716+6.98+34=162108+1216=6616=338

Commented by Tony Lin last updated on 18/Jan/20

thanks sir

thankssir

Commented by mind is power last updated on 18/Jan/20

y′re welcom

yrewelcom

Answered by john santu last updated on 18/Jan/20

let S= (1/3)+(8/9)+((27)/(27))+((64)/(81))+((125)/(243))+... (1)  by multiply in both side with (1/3)  (1/3)S= (1/9)+(8/(27))+((27)/(64))+((64)/(243))+... (2)  substract equations 1 and 2  (2/3)S=(1/3)+(7/9)+((19)/(27))+((37)/(81))+((61)/(243))+...(3)  (2/9)S= (1/9)+(7/(27))+((19)/(81))+((37)/(243))+...  (4/9)S=(1/3)+(6/9)+((12)/(27))+((18)/(81))+((24)/(243))+...  (4/9)S= (1/3)+6((1/9)+(2/(27))+(3/(81))+(4/(243))+...)  let P= (1/9)+(2/(27))+(3/(81))+(4/(243))+...  (1/3)P= (1/(27))+(2/(81))+(3/(243))+...  (2/3)P= (1/9)+(1/(27))+(1/(81))+(1/(243))+...=(1/6)  ⇒P= (1/4) . now we get   (4/9)S= (1/3)+6×(1/4) ⇒S= ((33)/(8 )) .★

letS=13+89+2727+6481+125243+...(1)bymultiplyinbothsidewith1313S=19+827+2764+64243+...(2)substractequations1and223S=13+79+1927+3781+61243+...(3)29S=19+727+1981+37243+...49S=13+69+1227+1881+24243+...49S=13+6(19+227+381+4243+...)letP=19+227+381+4243+...13P=127+281+3243+...23P=19+127+181+1243+...=16P=14.nowweget49S=13+6×14S=338.

Commented by Tony Lin last updated on 18/Jan/20

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com