Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 78490 by ~blr237~ last updated on 18/Jan/20

Find out A =Σ_(n=2) ^∞   ((ζ(n))/(n(−3)^n ))           where  ζ(p)=Σ_(n=1) ^∞  (1/n^p )

FindoutA=n=2ζ(n)n(3)nwhereζ(p)=n=11np

Answered by mind is power last updated on 19/Jan/20

let f(x)=Σ_(n≥2) ((ζ(n)x^n )/n)=Σ_(n≥2) (x^n /n)Σ_(m≥1) (1/m^n )  =Σ_(n≥2) .Σ_(m≥1) ((x/m))^n .(1/n)  ∀n,m ,n≥2 and m≥1   we haveΣ_(n≥2)  Σ_(m≥1) ((x/m))^n .(1/n),≤Σ_(n≥2) (x^n /n).ζ(2)<∞  ,∀x∈]−1,1[  ⇒Σ_(n≥2) .Σ_(m≥1) ((x/m))^n .(1/n)=Σ_(m≥1) Σ_(n≥2) ((((x/m))^n )/n)=f(x)  Σ_(k≥1) (a^k /k)=−ln(1−a)⇒Σ_(k≥2) (a^k /k)=−ln(1−a)−a  f(x)=Σ_(m≥1) {−ln(1−(x/m))−(x/m)}=f(x)    we have our sum=f(−(1/3))  Γ(x)=(1/x)Π_(k≥1) (((1+(1/k))^x )/(1+(x/k)))⇒(1/x)Π_(k≥1) .(e^(xln(1+(1/k))) /(1+(x/k)))=(1/x).Π_(k≥1) (e^(xln(1+(1/k))−(x/k)+(x/k)) /(1+(x/k)))  =(1/x).Π_(k≥1) (e^(x(ln(1+(1/k))−(1/k))+(x/k)) /(1+(x/k)))=(1/x).e^(Σ_(k≥1) x(ln(1+(1/k))−(1/k))) .Π_(k≥1) (e^(x/k) /e^(ln(1+(x/k))) )  Σ_(k≥1) {ln(1+(1/k))−(1/k)}=−γ Euler macheronie Constent  Γ(x)=(e^(−γx) /x).e^(Σ_(k≥1) {(x/k)−ln(1+(x/k))})   ⇒lnΓ(x)=−γx−ln(x)+Σ_(k≥1) {(x/k)−ln(1+(x/k))}  ⇒Σ_(k≥1) {(x/k)−ln(1+(x/k))}=ln(Γ(x))+γx+ln(x)  ⇒Σ_(k≥1) {−(x/k)−ln(1−(x/k))}=f(x)=ln(Γ(−x))−γx+ln(−x)  S=f(−(1/3))=ln(Γ((1/3)))+(γ/3)+ln((1/3))=Σ_(n≥2) ((ζ(n))/(n(−3)^n ))

letf(x)=n2ζ(n)xnn=n2xnnm11mn=n2.m1(xm)n.1nn,m,n2andm1wehaven2m1(xm)n.1n,n2xnn.ζ(2)<,x]1,1[n2.m1(xm)n.1n=m1n2(xm)nn=f(x)k1akk=ln(1a)k2akk=ln(1a)af(x)=m1{ln(1xm)xm}=f(x)wehaveoursum=f(13)Γ(x)=1xk1(1+1k)x1+xk1xk1.exln(1+1k)1+xk=1x.k1exln(1+1k)xk+xk1+xk=1x.k1ex(ln(1+1k)1k)+xk1+xk=1x.ek1x(ln(1+1k)1k).k1exkeln(1+xk)k1{ln(1+1k)1k}=γEulermacheronieConstentΓ(x)=eγxx.ek1{xkln(1+xk)}lnΓ(x)=γxln(x)+k1{xkln(1+xk)}k1{xkln(1+xk)}=ln(Γ(x))+γx+ln(x)k1{xkln(1xk)}=f(x)=ln(Γ(x))γx+ln(x)S=f(13)=ln(Γ(13))+γ3+ln(13)=n2ζ(n)n(3)n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com