Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 78511 by ajfour last updated on 18/Jan/20

Commented by ajfour last updated on 18/Jan/20

The cylinder has half the volume  of the cuboid. If its circular faces  touch the adjoining walls, find  coordinates of points A, B, C  in terms of a, b, c.

Thecylinderhashalfthevolumeofthecuboid.Ifitscircularfacestouchtheadjoiningwalls,findcoordinatesofpointsA,B,Cintermsofa,b,c.

Commented by ajfour last updated on 19/Jan/20

Answered by mr W last updated on 19/Jan/20

Commented by mr W last updated on 20/Jan/20

it is to find the orientation and size  of the cylinder.  P(α,0,0)  Q(0,β,0)  R(0,0,γ)  P′(a−α,0,0)  Q′(0,b−β,0)  R′(0,0,c−γ)  p=QR=(√(β^2 +γ^2 ))  q=RP=(√(γ^2 +α^2 ))  r=PQ=(√(α^2 +β^2 ))  ρ=radius of incircle=radius of cylinder  ⇒ρ=(1/2)(√(((−(√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 )))((√(α^2 +β^2 ))−(√(β^2 +γ^2 ))+(√(γ^2 +α^2 )))((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))−(√(γ^2 +α^2 ))))/((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 )))))  M=center of incircle=axis of cylinder  M=(p/(p+q+r))P+(q/(p+q+r))Q+(r/(p+q+r))R  x_M =(p/(p+q+r))x_P =((α(√(β^2 +γ^2 )))/((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  y_M =(q/(p+q+r))y_Q =((β(√(γ^2 +α^2 )))/((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  z_M =(r/(p+q+r))z_R =((γ(√(α^2 +β^2 )))/((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  similarly  x_(M′) =(p/(p+q+r))x_(P′) =(((a−α)(√(β^2 +γ^2 )))/((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  y_(M′) =(q/(p+q+r))y_(Q′) =(((b−β)(√(γ^2 +α^2 )))/((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  z_(M′) =(r/(p+q+r))z_(R′) =(((c−γ)(√(α^2 +β^2 )))/((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  Δx_(M′−M) =(((a−2α)(√(β^2 +γ^2 )))/((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  Δy_(M′−M) =(((b−2β)(√(γ^2 +α^2 )))/((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  Δz_(M′−M) =(((c−2γ)(√(α^2 +β^2 )))/((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  MM′=L=((√((a−2α)^2 (β^2 +γ^2 )+(b−2β)^2 (γ^2 +α^2 )+(c−2γ)^2 (α^2 +β^2 )))/((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  L=length of cylinder  eqn. of plane PQR:  (x/α)+(y/β)+(z/γ)=1  MM′⊥plane PQR:  α(a−2α)(√(β^2 +γ^2 ))=β(b−2β)(√(γ^2 +α^2 ))=γ(c−2γ)(√(α^2 +β^2 ))  α(a−2α)(√(β^2 +γ^2 ))=γ(c−2γ)(√(α^2 +β^2 ))   ...(i)  β(b−2β)(√(γ^2 +α^2 ))=γ(c−2γ)(√(α^2 +β^2 ))   ...(ii)  volume of cylinder V=πρ^2 L=((abc)/2)  (((−(√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 )))((√(α^2 +β^2 ))−(√(β^2 +γ^2 ))+(√(γ^2 +α^2 )))((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))−(√(γ^2 +α^2 )))(√((a−2α)^2 (β^2 +γ^2 )+(b−2β)^2 (γ^2 +α^2 )+(c−2γ)^2 (α^2 +β^2 ))))/(((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 )))^2 ))=((2abc)/π)   ...(iii)  from (i) to (iii): α,β,γ

itistofindtheorientationandsizeofthecylinder.P(α,0,0)Q(0,β,0)R(0,0,γ)P(aα,0,0)Q(0,bβ,0)R(0,0,cγ)p=QR=β2+γ2q=RP=γ2+α2r=PQ=α2+β2ρ=radiusofincircle=radiusofcylinderρ=12(α2+β2+β2+γ2+γ2+α2)(α2+β2β2+γ2+γ2+α2)(α2+β2+β2+γ2γ2+α2)α2+β2+β2+γ2+γ2+α2M=centerofincircle=axisofcylinderM=pp+q+rP+qp+q+rQ+rp+q+rRxM=pp+q+rxP=αβ2+γ2α2+β2+β2+γ2+γ2+α2yM=qp+q+ryQ=βγ2+α2α2+β2+β2+γ2+γ2+α2zM=rp+q+rzR=γα2+β2α2+β2+β2+γ2+γ2+α2similarlyxM=pp+q+rxP=(aα)β2+γ2α2+β2+β2+γ2+γ2+α2yM=qp+q+ryQ=(bβ)γ2+α2α2+β2+β2+γ2+γ2+α2zM=rp+q+rzR=(cγ)α2+β2α2+β2+β2+γ2+γ2+α2ΔxMM=(a2α)β2+γ2α2+β2+β2+γ2+γ2+α2ΔyMM=(b2β)γ2+α2α2+β2+β2+γ2+γ2+α2ΔzMM=(c2γ)α2+β2α2+β2+β2+γ2+γ2+α2MM=L=(a2α)2(β2+γ2)+(b2β)2(γ2+α2)+(c2γ)2(α2+β2)α2+β2+β2+γ2+γ2+α2L=lengthofcylindereqn.ofplanePQR:xα+yβ+zγ=1MMplanePQR:α(a2α)β2+γ2=β(b2β)γ2+α2=γ(c2γ)α2+β2α(a2α)β2+γ2=γ(c2γ)α2+β2...(i)β(b2β)γ2+α2=γ(c2γ)α2+β2...(ii)volumeofcylinderV=πρ2L=abc2(α2+β2+β2+γ2+γ2+α2)(α2+β2β2+γ2+γ2+α2)(α2+β2+β2+γ2γ2+α2)(a2α)2(β2+γ2)+(b2β)2(γ2+α2)+(c2γ)2(α2+β2)(α2+β2+β2+γ2+γ2+α2)2=2abcπ...(iii)from(i)to(iii):α,β,γ

Commented by mr W last updated on 19/Jan/20

thank you too sir!

thankyoutoosir!

Commented by ajfour last updated on 19/Jan/20

Looks fabulous Sir, i shall try  to follow....already i have  learned somethings from your  diagram post, and i am trying  to solve even. Thank you  immensely Sir.

LooksfabulousSir,ishalltrytofollow....alreadyihavelearnedsomethingsfromyourdiagrampost,andiamtryingtosolveeven.ThankyouimmenselySir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com