Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 78522 by jagoll last updated on 18/Jan/20

what is the   line passing through (2,2,1)  and parallel to 2i^�  − j^�  − k^�  ?

$${what}\:{is}\:{the}\: \\ $$$${line}\:{passing}\:{through}\:\left(\mathrm{2},\mathrm{2},\mathrm{1}\right) \\ $$$${and}\:{parallel}\:{to}\:\mathrm{2}\hat {{i}}\:−\:\hat {{j}}\:−\:\hat {{k}}\:? \\ $$

Commented by mr W last updated on 18/Jan/20

((x−2)/2)=((y−2)/(−1))=((z−1)/(−1))

$$\frac{{x}−\mathrm{2}}{\mathrm{2}}=\frac{{y}−\mathrm{2}}{−\mathrm{1}}=\frac{{z}−\mathrm{1}}{−\mathrm{1}} \\ $$

Commented by jagoll last updated on 18/Jan/20

how about if line orthogonal sir?

$${how}\:{about}\:{if}\:{line}\:{orthogonal}\:{sir}? \\ $$

Commented by mr W last updated on 18/Jan/20

((x−2)/(10))=((y−2)/(13))=((z−1)/7)

$$\frac{{x}−\mathrm{2}}{\mathrm{10}}=\frac{{y}−\mathrm{2}}{\mathrm{13}}=\frac{{z}−\mathrm{1}}{\mathrm{7}} \\ $$

Commented by jagoll last updated on 19/Jan/20

how get (10,13,7) sir?

$$\mathrm{how}\:\mathrm{get}\:\left(\mathrm{10},\mathrm{13},\mathrm{7}\right)\:\mathrm{sir}? \\ $$

Commented by mr W last updated on 19/Jan/20

line 1 (given):  vector 2i−j−k  i.e. (x/2)=(y/(−1))=(z/(−1))    line 2 through point (2,2,1) and ⊥ line 1:  say ((x−2)/a)=((y−2)/b)=((z−1)/c)  line 2 ⊥ line 1:  2×a−1×b−1×c=0  ⇒a=((b+c)/2)  a point should both on line 1 and on  line 2:  point on line 1: (x/2)=(y/(−1))=(z/(−1))=t  ⇒x=2t  ⇒y=−t  ⇒z=−t  point on line 2: ((x−2)/a)=((y−2)/b)=((z−1)/c)=s  ⇒x=2+sa=2t  ⇒y=2+sb=−t  ⇒z=1+sc=−t    ⇒sc=−t−1  ⇒sb=−t−2  ⇒sa=2t−2  a=((b+c)/2) ⇒sa=((sb+sc)/2)⇒2t−2=((−t−2−t−1)/2)  ⇒4t−4=−2t−3  ⇒t=(1/6)  ⇒sa=2×(1/6)−2=−((10)/6)  ⇒sb=−(1/6)−2=−((13)/6)  ⇒sc=−(1/6)−1=−(7/6)  ⇒a:b:c=10:13:7  ⇒line 2:  ((x−2)/(10))=((y−2)/(13))=((z−1)/7)

$${line}\:\mathrm{1}\:\left({given}\right): \\ $$$${vector}\:\mathrm{2}{i}−{j}−{k} \\ $$$${i}.{e}.\:\frac{{x}}{\mathrm{2}}=\frac{{y}}{−\mathrm{1}}=\frac{{z}}{−\mathrm{1}} \\ $$$$ \\ $$$${line}\:\mathrm{2}\:{through}\:{point}\:\left(\mathrm{2},\mathrm{2},\mathrm{1}\right)\:{and}\:\bot\:{line}\:\mathrm{1}: \\ $$$${say}\:\frac{{x}−\mathrm{2}}{{a}}=\frac{{y}−\mathrm{2}}{{b}}=\frac{{z}−\mathrm{1}}{{c}} \\ $$$${line}\:\mathrm{2}\:\bot\:{line}\:\mathrm{1}: \\ $$$$\mathrm{2}×{a}−\mathrm{1}×{b}−\mathrm{1}×{c}=\mathrm{0} \\ $$$$\Rightarrow{a}=\frac{{b}+{c}}{\mathrm{2}} \\ $$$${a}\:{point}\:{should}\:{both}\:{on}\:{line}\:\mathrm{1}\:{and}\:{on} \\ $$$${line}\:\mathrm{2}: \\ $$$${point}\:{on}\:{line}\:\mathrm{1}:\:\frac{{x}}{\mathrm{2}}=\frac{{y}}{−\mathrm{1}}=\frac{{z}}{−\mathrm{1}}={t} \\ $$$$\Rightarrow{x}=\mathrm{2}{t} \\ $$$$\Rightarrow{y}=−{t} \\ $$$$\Rightarrow{z}=−{t} \\ $$$${point}\:{on}\:{line}\:\mathrm{2}:\:\frac{{x}−\mathrm{2}}{{a}}=\frac{{y}−\mathrm{2}}{{b}}=\frac{{z}−\mathrm{1}}{{c}}={s} \\ $$$$\Rightarrow{x}=\mathrm{2}+{sa}=\mathrm{2}{t} \\ $$$$\Rightarrow{y}=\mathrm{2}+{sb}=−{t} \\ $$$$\Rightarrow{z}=\mathrm{1}+{sc}=−{t} \\ $$$$ \\ $$$$\Rightarrow{sc}=−{t}−\mathrm{1} \\ $$$$\Rightarrow{sb}=−{t}−\mathrm{2} \\ $$$$\Rightarrow{sa}=\mathrm{2}{t}−\mathrm{2} \\ $$$${a}=\frac{{b}+{c}}{\mathrm{2}}\:\Rightarrow{sa}=\frac{{sb}+{sc}}{\mathrm{2}}\Rightarrow\mathrm{2}{t}−\mathrm{2}=\frac{−{t}−\mathrm{2}−{t}−\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}{t}−\mathrm{4}=−\mathrm{2}{t}−\mathrm{3} \\ $$$$\Rightarrow{t}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\Rightarrow{sa}=\mathrm{2}×\frac{\mathrm{1}}{\mathrm{6}}−\mathrm{2}=−\frac{\mathrm{10}}{\mathrm{6}} \\ $$$$\Rightarrow{sb}=−\frac{\mathrm{1}}{\mathrm{6}}−\mathrm{2}=−\frac{\mathrm{13}}{\mathrm{6}} \\ $$$$\Rightarrow{sc}=−\frac{\mathrm{1}}{\mathrm{6}}−\mathrm{1}=−\frac{\mathrm{7}}{\mathrm{6}} \\ $$$$\Rightarrow{a}:{b}:{c}=\mathrm{10}:\mathrm{13}:\mathrm{7} \\ $$$$\Rightarrow{line}\:\mathrm{2}:\:\:\frac{{x}−\mathrm{2}}{\mathrm{10}}=\frac{{y}−\mathrm{2}}{\mathrm{13}}=\frac{{z}−\mathrm{1}}{\mathrm{7}} \\ $$

Commented by mr W last updated on 19/Jan/20

clear?  maybe there are other easier ways.

$${clear}? \\ $$$${maybe}\:{there}\:{are}\:{other}\:{easier}\:{ways}. \\ $$

Commented by jagoll last updated on 19/Jan/20

line passing trought point  (2,2,1) ⇒((x−2)/a)=((y−2)/b)=((z−1)/c)  orthogonal to vector 2i^�  − j^� −k^�   u^�  × v^�  =  determinant (((a      b       c)),((2  −1  −1)))= (−b+c)i^�  +(a+2c) j^� −(a+2b) k^�   ⇒ −2b+2c+2a+4c−a−2b=0  a −4b+6c=0

$$\mathrm{line}\:\mathrm{passing}\:\mathrm{trought}\:\mathrm{point} \\ $$$$\left(\mathrm{2},\mathrm{2},\mathrm{1}\right)\:\Rightarrow\frac{\mathrm{x}−\mathrm{2}}{\mathrm{a}}=\frac{\mathrm{y}−\mathrm{2}}{\mathrm{b}}=\frac{\mathrm{z}−\mathrm{1}}{\mathrm{c}} \\ $$$$\mathrm{orthogonal}\:\mathrm{to}\:\mathrm{vector}\:\mathrm{2}\hat {\mathrm{i}}\:−\:\hat {\mathrm{j}}−\hat {\mathrm{k}} \\ $$$$\bar {\mathrm{u}}\:×\:\bar {\mathrm{v}}\:=\:\begin{vmatrix}{\mathrm{a}\:\:\:\:\:\:\mathrm{b}\:\:\:\:\:\:\:\mathrm{c}}\\{\mathrm{2}\:\:−\mathrm{1}\:\:−\mathrm{1}}\end{vmatrix}=\:\left(−\mathrm{b}+\mathrm{c}\right)\hat {\mathrm{i}}\:+\left(\mathrm{a}+\mathrm{2c}\right)\:\hat {\mathrm{j}}−\left(\mathrm{a}+\mathrm{2b}\right)\:\hat {\mathrm{k}} \\ $$$$\Rightarrow\:−\mathrm{2b}+\mathrm{2c}+\mathrm{2a}+\mathrm{4c}−\mathrm{a}−\mathrm{2b}=\mathrm{0} \\ $$$$\mathrm{a}\:−\mathrm{4b}+\mathrm{6c}=\mathrm{0}\: \\ $$

Commented by jagoll last updated on 19/Jan/20

what wrong my work ?

$$\mathrm{what}\:\mathrm{wrong}\:\mathrm{my}\:\mathrm{work}\:? \\ $$

Commented by mr W last updated on 19/Jan/20

totally wrong.  you are looking for a vector u which is  perpendicular to v, not looking for  a vector which is perpendicular to u  and v!. u×v is a vector which is   perpendicular to u and v!  u=(a,b,c)  v=(2,−1,−1)  since u⊥v, ⇒a×2+b×(−1)+c×(−1)=0

$${totally}\:{wrong}. \\ $$$${you}\:{are}\:{looking}\:{for}\:{a}\:{vector}\:\boldsymbol{{u}}\:{which}\:{is} \\ $$$${perpendicular}\:{to}\:\boldsymbol{{v}},\:{not}\:{looking}\:{for} \\ $$$${a}\:{vector}\:{which}\:{is}\:{perpendicular}\:{to}\:\boldsymbol{{u}} \\ $$$${and}\:\boldsymbol{{v}}!.\:\boldsymbol{{u}}×\boldsymbol{{v}}\:{is}\:{a}\:{vector}\:{which}\:{is}\: \\ $$$${perpendicular}\:{to}\:\boldsymbol{{u}}\:{and}\:\boldsymbol{{v}}! \\ $$$$\boldsymbol{{u}}=\left({a},{b},{c}\right) \\ $$$$\boldsymbol{{v}}=\left(\mathrm{2},−\mathrm{1},−\mathrm{1}\right) \\ $$$${since}\:\boldsymbol{{u}}\bot\boldsymbol{{v}},\:\Rightarrow{a}×\mathrm{2}+{b}×\left(−\mathrm{1}\right)+{c}×\left(−\mathrm{1}\right)=\mathrm{0} \\ $$

Commented by jagoll last updated on 19/Jan/20

oo yes sir. i understand. thanks you sir

$$\mathrm{oo}\:\mathrm{yes}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{understand}.\:\mathrm{thanks}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com