All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 78549 by aliesam last updated on 18/Jan/20
Answered by ~blr237~ last updated on 18/Jan/20
letnameditAstateu=x2,A=2∫0π4tan2u1+sinuduA2=∫0π4tan2ucos2u(1−sinu)du=∫0π4tan2u(ducos2u)−∫0π4sinutan2u(ducos2u)=∫012t1−t2dt−∫012t31−t4dtwheret=tanuA22=I2−I4withIn=∫01tn−11−tndtforn⩾1letstatey=tn⇒dt=1ny1n−1dyIn=∫01yn−12n(1−y)−12(1ny1n−1dy)nIn=∫01y12n+12−1(1−y)12−1dy=B(12n+12,12)=Γ(12n+12)Γ(12)Γ(12n+1)soIn=2πΓ(12n+12)Γ(12n)
Commented by mind is power last updated on 19/Jan/20
niceSir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com