Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 78549 by aliesam last updated on 18/Jan/20

Answered by ~blr237~ last updated on 18/Jan/20

let named it A  state u=(x/2)  , A=2∫_0 ^(π/4) ((√(tan2u))/(1+sinu)) du  (A/2)= ∫_0 ^(π/4) ((√(tan2u))/(cos^2 u))(1−sinu)du        =∫_0 ^(π/4)  (√(tan2u)) ((du/(cos^2 u))) −∫_0 ^(π/4) sinu(√(tan2u)) ((du/(cos^2 u)))       = ∫_0 ^1  (√((2t)/(1−t^2 )))  dt − ∫_0 ^1 (√((2t^3 )/(1−t^4 )))  dt    where t=tanu  (A/(2(√2)))=  I_2 −I_4    with I_n =∫_0 ^1 (√(t^(n−1) /(1−t^n ))) dt  for n≥1   let state  y=t^n    ⇒ dt=(1/n)y^((1/n)−1) dy  I_n = ∫_0 ^1 y^((n−1)/(2n)) (1−y)^((−1)/2) ((1/n)y^((1/n)−1) dy)   nI_n   =∫_0 ^1  y^((1/(2n))+(1/2)−1) (1−y)^((1/2)−1) dy          =B((1/(2n))+(1/2),(1/2))=((Γ((1/(2n))+(1/2))Γ((1/2)))/(Γ((1/(2n))+1)))     so  I_n = ((2(√π) Γ((1/(2n))+(1/2)))/(Γ((1/(2n)))))

$$\mathrm{let}\:\mathrm{named}\:\mathrm{it}\:\mathrm{A} \\ $$$$\mathrm{state}\:\mathrm{u}=\frac{\mathrm{x}}{\mathrm{2}}\:\:,\:\mathrm{A}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\sqrt{\mathrm{tan2u}}}{\mathrm{1}+\mathrm{sinu}}\:\mathrm{du} \\ $$$$\frac{\mathrm{A}}{\mathrm{2}}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\sqrt{\mathrm{tan2u}}}{\mathrm{cos}^{\mathrm{2}} \mathrm{u}}\left(\mathrm{1}−\mathrm{sinu}\right)\mathrm{du} \\ $$$$\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\sqrt{\mathrm{tan2u}}\:\left(\frac{\mathrm{du}}{\mathrm{cos}^{\mathrm{2}} \mathrm{u}}\right)\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{sinu}\sqrt{\mathrm{tan2u}}\:\left(\frac{\mathrm{du}}{\mathrm{cos}^{\mathrm{2}} \mathrm{u}}\right) \\ $$$$\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{\frac{\mathrm{2t}}{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }}\:\:\mathrm{dt}\:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{\mathrm{2t}^{\mathrm{3}} }{\mathrm{1}−\mathrm{t}^{\mathrm{4}} }}\:\:\mathrm{dt}\:\:\:\:\mathrm{where}\:\mathrm{t}=\mathrm{tanu} \\ $$$$\frac{\mathrm{A}}{\mathrm{2}\sqrt{\mathrm{2}}}=\:\:\mathrm{I}_{\mathrm{2}} −\mathrm{I}_{\mathrm{4}} \:\:\:\mathrm{with}\:\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{\mathrm{t}^{\mathrm{n}−\mathrm{1}} }{\mathrm{1}−\mathrm{t}^{\mathrm{n}} }}\:\mathrm{dt}\:\:\mathrm{for}\:\mathrm{n}\geqslant\mathrm{1}\: \\ $$$$\mathrm{let}\:\mathrm{state}\:\:\mathrm{y}=\mathrm{t}^{\mathrm{n}} \:\:\:\Rightarrow\:\mathrm{dt}=\frac{\mathrm{1}}{\mathrm{n}}\mathrm{y}^{\frac{\mathrm{1}}{\mathrm{n}}−\mathrm{1}} \mathrm{dy} \\ $$$$\mathrm{I}_{\mathrm{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{y}^{\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2n}}} \left(\mathrm{1}−\mathrm{y}\right)^{\frac{−\mathrm{1}}{\mathrm{2}}} \left(\frac{\mathrm{1}}{\mathrm{n}}\mathrm{y}^{\frac{\mathrm{1}}{\mathrm{n}}−\mathrm{1}} \mathrm{dy}\right) \\ $$$$\:\mathrm{nI}_{\mathrm{n}} \:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{y}^{\frac{\mathrm{1}}{\mathrm{2n}}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} \left(\mathrm{1}−\mathrm{y}\right)^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} \mathrm{dy} \\ $$$$\:\:\:\:\:\:\:\:=\mathrm{B}\left(\frac{\mathrm{1}}{\mathrm{2n}}+\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2n}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2n}}+\mathrm{1}\right)}\: \\ $$$$\:\:\mathrm{so}\:\:\mathrm{I}_{\mathrm{n}} =\:\frac{\mathrm{2}\sqrt{\pi}\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{2n}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2n}}\right)} \\ $$$$ \\ $$

Commented by mind is power last updated on 19/Jan/20

nice Sir

$$\mathrm{nice}\:\mathrm{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com