Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 7855 by 314159 last updated on 21/Sep/16

Commented by 123456 last updated on 21/Sep/16

a_1 ,a_2 ,a_3 ⇒a_3 −a_2 =a_2 −a_1 ,a_1 ≠a_2   a_1 ,a_2 ,b_3 ,a_3 ⇒(a_3 /b_3 )=(b_3 /a_2 )=(a_2 /a_1 )  Σb=3+(√5)  (a_1 /(1−(a_2 /a_1 )))=3+(√5)         ∣(a_2 /a_1 )∣<1

$${a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} \Rightarrow{a}_{\mathrm{3}} −{a}_{\mathrm{2}} ={a}_{\mathrm{2}} −{a}_{\mathrm{1}} ,{a}_{\mathrm{1}} \neq{a}_{\mathrm{2}} \\ $$$${a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{b}_{\mathrm{3}} ,{a}_{\mathrm{3}} \Rightarrow\frac{{a}_{\mathrm{3}} }{{b}_{\mathrm{3}} }=\frac{{b}_{\mathrm{3}} }{{a}_{\mathrm{2}} }=\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{1}} } \\ $$$$\Sigma{b}=\mathrm{3}+\sqrt{\mathrm{5}} \\ $$$$\frac{{a}_{\mathrm{1}} }{\mathrm{1}−\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{1}} }}=\mathrm{3}+\sqrt{\mathrm{5}}\:\:\:\:\:\:\:\:\:\mid\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{1}} }\mid<\mathrm{1} \\ $$

Commented by Rasheed Soomro last updated on 21/Sep/16

a,ar,ar^2 ,ar^3 ,...[a:first term,r:common ratio]  a,ar,ar^3    are in AP, ar is AM between a and ar^3   ∴ ar=((a+ar^3 )/2)⇒2r=1+r^3 ⇒r^3 −2r+1=0  S=(a/(1−r))=3+(√5)   [S =a+ar+ar^2 +...]..........(∗)  An attempt to factrize r^3 −2r+1  r^3 −2r+1=0  2r^3 −2r+1−r^3 =0  2r(r^2 −1)−(r^3 −1)=0  2r(r−1)(r+1)−(r−1)(r^2 +r+1)=0  (r−1)[2r(r+1)−(r^2 +r+1)]=0  r−1=0    ∣  2r^2 +2r−r^2 −r−1=0   r=1          ∣    r^2 +r−1=0  r=1 is discardable because S is infinity there.  So      r^2 +r−1=0   [r≠1]             r=((−1±(√(1+4)))/2)=((1±(√5))/2)  As r<1 So as ((1+(√5))/2)>0,  Hence r= ((1−(√5))/2) is the only value.  From   (∗)           (a/(1−r))=3+(√5)          a=(3+(√5))(1−r)          a=(3+(√5))(1−((1−(√5))/2))          a=(3+(√5))(((2−1+(√5))/2))=(3+(√5))(((1+(√5))/2))   a=(((3+(√5))(1+(√5)))/2)      a=((3+3(√5)+(√5)+5)/2)          =4+2(√5)  So the first term is  4+2(√5)

$${a},{ar},{ar}^{\mathrm{2}} ,{ar}^{\mathrm{3}} ,...\left[{a}:{first}\:{term},{r}:{common}\:{ratio}\right] \\ $$$${a},{ar},{ar}^{\mathrm{3}} \:\:\:{are}\:{in}\:{AP},\:{ar}\:{is}\:{AM}\:{between}\:{a}\:{and}\:{ar}^{\mathrm{3}} \\ $$$$\therefore\:{ar}=\frac{{a}+{ar}^{\mathrm{3}} }{\mathrm{2}}\Rightarrow\mathrm{2}{r}=\mathrm{1}+{r}^{\mathrm{3}} \Rightarrow{r}^{\mathrm{3}} −\mathrm{2}{r}+\mathrm{1}=\mathrm{0} \\ $$$${S}=\frac{{a}}{\mathrm{1}−{r}}=\mathrm{3}+\sqrt{\mathrm{5}}\:\:\:\left[{S}\:={a}+{ar}+{ar}^{\mathrm{2}} +...\right]..........\left(\ast\right) \\ $$$${An}\:{attempt}\:{to}\:{factrize}\:{r}^{\mathrm{3}} −\mathrm{2}{r}+\mathrm{1} \\ $$$${r}^{\mathrm{3}} −\mathrm{2}{r}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{2}{r}^{\mathrm{3}} −\mathrm{2}{r}+\mathrm{1}−{r}^{\mathrm{3}} =\mathrm{0} \\ $$$$\mathrm{2}{r}\left({r}^{\mathrm{2}} −\mathrm{1}\right)−\left({r}^{\mathrm{3}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{2}{r}\left({r}−\mathrm{1}\right)\left({r}+\mathrm{1}\right)−\left({r}−\mathrm{1}\right)\left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left[\mathrm{2}{r}\left({r}+\mathrm{1}\right)−\left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right)\right]=\mathrm{0} \\ $$$${r}−\mathrm{1}=\mathrm{0}\:\:\:\:\mid\:\:\mathrm{2}{r}^{\mathrm{2}} +\mathrm{2}{r}−{r}^{\mathrm{2}} −{r}−\mathrm{1}=\mathrm{0} \\ $$$$\:{r}=\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mid\:\:\:\:{r}^{\mathrm{2}} +{r}−\mathrm{1}=\mathrm{0} \\ $$$${r}=\mathrm{1}\:{is}\:{discardable}\:{because}\:{S}\:{is}\:{infinity}\:{there}. \\ $$$${So}\:\:\:\:\:\:{r}^{\mathrm{2}} +{r}−\mathrm{1}=\mathrm{0}\:\:\:\left[{r}\neq\mathrm{1}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{r}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}}}{\mathrm{2}}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${As}\:{r}<\mathrm{1}\:{So}\:{as}\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}>\mathrm{0},\:\:{Hence}\:{r}=\:\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\:{is}\:{the}\:{only}\:{value}. \\ $$$${From}\:\:\:\left(\ast\right) \\ $$$$\:\:\:\:\:\:\:\:\:\frac{{a}}{\mathrm{1}−{r}}=\mathrm{3}+\sqrt{\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:\:{a}=\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\left(\mathrm{1}−{r}\right) \\ $$$$\:\:\:\:\:\:\:\:{a}=\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\left(\mathrm{1}−\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:{a}=\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\left(\frac{\mathrm{2}−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)=\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$$$\:{a}=\frac{\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:{a}=\frac{\mathrm{3}+\mathrm{3}\sqrt{\mathrm{5}}+\sqrt{\mathrm{5}}+\mathrm{5}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\mathrm{4}+\mathrm{2}\sqrt{\mathrm{5}} \\ $$$${So}\:{the}\:{first}\:{term}\:{is}\:\:\mathrm{4}+\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\:\:\:\:\:\: \\ $$

Commented by 314159 last updated on 22/Sep/16

Thank a lot!

$$\boldsymbol{\mathrm{Thank}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{lot}}! \\ $$

Commented by lepan last updated on 06/Oct/16

a=−1−(√5)

$${a}=−\mathrm{1}−\sqrt{\mathrm{5}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com