Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 78596 by jagoll last updated on 19/Jan/20

    lim_(x→0)  (1−3tan^2 x)^((2/(sin^2  3x))   ) = ?

$$ \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}−\mathrm{3tan}\:^{\mathrm{2}} \mathrm{x}\right)^{\frac{\mathrm{2}}{\mathrm{sin}\:^{\mathrm{2}} \:\mathrm{3x}}\:\:\:} =\:?\: \\ $$

Commented by mathmax by abdo last updated on 19/Jan/20

let A(x)=(1−3tan^2 x)^(2/(sin^2 (3x)))  ⇒ A(x)=e^((2/(sin^2 (3x)))ln(1−3tan^2 x))   we have tanx ∼ x ⇒1−3tan^2 x ∼1−3x^2  and ln(1−3x^2 )∼−3x^2   also sin(3x) ∼3x ⇒sin^2 (3x)∼9x^2  ⇒  (2/(sin^2 (3x)))ln(1−3tan^2 x) ∼((−6x^2 )/(9x^2 )) =−(2/3) ⇒lim_(x→0) A(x)=e^(−(2/3))   =(1/((^3 (√(e^2 )))))

$${let}\:{A}\left({x}\right)=\left(\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}\right)^{\frac{\mathrm{2}}{{sin}^{\mathrm{2}} \left(\mathrm{3}{x}\right)}} \:\Rightarrow\:{A}\left({x}\right)={e}^{\frac{\mathrm{2}}{{sin}^{\mathrm{2}} \left(\mathrm{3}{x}\right)}{ln}\left(\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}\right)} \\ $$$${we}\:{have}\:{tanx}\:\sim\:{x}\:\Rightarrow\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}\:\sim\mathrm{1}−\mathrm{3}{x}^{\mathrm{2}} \:{and}\:{ln}\left(\mathrm{1}−\mathrm{3}{x}^{\mathrm{2}} \right)\sim−\mathrm{3}{x}^{\mathrm{2}} \\ $$$${also}\:{sin}\left(\mathrm{3}{x}\right)\:\sim\mathrm{3}{x}\:\Rightarrow{sin}^{\mathrm{2}} \left(\mathrm{3}{x}\right)\sim\mathrm{9}{x}^{\mathrm{2}} \:\Rightarrow \\ $$$$\frac{\mathrm{2}}{{sin}^{\mathrm{2}} \left(\mathrm{3}{x}\right)}{ln}\left(\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}\right)\:\sim\frac{−\mathrm{6}{x}^{\mathrm{2}} }{\mathrm{9}{x}^{\mathrm{2}} }\:=−\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} {A}\left({x}\right)={e}^{−\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$=\frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{\left.{e}^{\mathrm{2}} \right)}\right.} \\ $$

Answered by john santu last updated on 19/Jan/20

we know that lim_(x→0)  (1+x)^(1/x) = e  now we work the question   lim_(x→0) [ (1+(−3tan^2 x))^(1/(−3tan^2 x)) ]^((−6tan^2 x)/(sin^2 3x))    = e^(lim_(x→0)  (((−6tan^2 x)/(sin^2 3x))))  = e^(−(6/9))  = (1/(e^2 )^(1/(3 )) ) .

$${we}\:{know}\:{that}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} =\:{e} \\ $$$${now}\:{we}\:{work}\:{the}\:{question}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\:\left(\mathrm{1}+\left(−\mathrm{3tan}\:^{\mathrm{2}} {x}\right)\right)^{\frac{\mathrm{1}}{−\mathrm{3tan}\:^{\mathrm{2}} {x}}} \right]\:^{\frac{−\mathrm{6tan}\:^{\mathrm{2}} {x}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{3}{x}}} \: \\ $$$$=\:{e}\:^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{−\mathrm{6tan}\:^{\mathrm{2}} {x}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{3}{x}}\right)} \:=\:{e}\:^{−\frac{\mathrm{6}}{\mathrm{9}}} \:=\:\frac{\mathrm{1}}{\sqrt[{\mathrm{3}\:}]{{e}^{\mathrm{2}} }}\:.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com