Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 78625 by mathmax by abdo last updated on 19/Jan/20

calculate  ∫_(−∞) ^(+∞)  ((arctan(x^2 −3))/((x^2 +x+1)^2 ))dx

calculate+arctan(x23)(x2+x+1)2dx

Commented by mathmax by abdo last updated on 19/Jan/20

let W(z)=((arctan(z^2 −3))/((z^2  +z+1)^2 ))  poles of W?  z^2 +z+1 =0 →Δ =1−4 =−3 ⇒z_1 =((−1+i(√3))/2) =e^(i((2π)/3))   z_2 =e^(−((2iπ)/3))  ⇒W(z) =((arctan(z^2 −3))/((z−e^((i2π)/3) )^2 (z−e^(−((2iπ)/3)) )^2 ))  ∫_(−∞) ^(+∞)  W(z)dz =2iπRes(W,e^(i((2π)/3)) )  Res(W,e^((i2π)/3) ) =lim_(z→e^((i2π)/3) )   (1/((2−1)!)){(z−e^((i2π)/3) )^2 W(z)}^((1))   =lim_(z→e^((i2π)/3) )    { ((arctan(z^2 −3))/((z−e^(−((2iπ)/3)) )^2 ))}^((1))   =lim_(z→e^((i2π)/3) )    ((((2z)/(1+(z^2 −3)^2 ))×(z−e^(−((2iπ)/3)) )^2 −2(z−e^(−((2iπ)/3)) )arctan(z^2 −3))/((z−e^(−((2iπ)/3)) )^4 ))  =lim_(z→e^((i2π)/3) )    ((((2z(z−e^(−i((2π)/3)) ))/(1+(z^2 −3)^2 ))−2arctan(z^2 −3))/((z−e^(−((2iπ)/3)) )^3 ))  =((((2e^(i((2π)/3)) (2isin(((2π)/3)))/(1+(e^((i4π)/3) −3)^2 ))−2arctan(e^((i4π)/3) −3))/((2isin(((2π)/3)))^3 ))  =((((2i(√3)e^(i((2π)/3)) )/(1+(e^((i4π)/3) −3)^2 ))−2arctan(e^((i4π)/3) −3))/((i(√3))^3 ))  ....be continued...

letW(z)=arctan(z23)(z2+z+1)2polesofW?z2+z+1=0Δ=14=3z1=1+i32=ei2π3z2=e2iπ3W(z)=arctan(z23)(zei2π3)2(ze2iπ3)2+W(z)dz=2iπRes(W,ei2π3)Res(W,ei2π3)=limzei2π31(21)!{(zei2π3)2W(z)}(1)=limzei2π3{arctan(z23)(ze2iπ3)2}(1)=limzei2π32z1+(z23)2×(ze2iπ3)22(ze2iπ3)arctan(z23)(ze2iπ3)4=limzei2π32z(zei2π3)1+(z23)22arctan(z23)(ze2iπ3)3=2ei2π3(2isin(2π3)1+(ei4π33)22arctan(ei4π33)(2isin(2π3))3=2i3ei2π31+(ei4π33)22arctan(ei4π33)(i3)3....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com