All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 78625 by mathmax by abdo last updated on 19/Jan/20
calculate∫−∞+∞arctan(x2−3)(x2+x+1)2dx
Commented by mathmax by abdo last updated on 19/Jan/20
letW(z)=arctan(z2−3)(z2+z+1)2polesofW?z2+z+1=0→Δ=1−4=−3⇒z1=−1+i32=ei2π3z2=e−2iπ3⇒W(z)=arctan(z2−3)(z−ei2π3)2(z−e−2iπ3)2∫−∞+∞W(z)dz=2iπRes(W,ei2π3)Res(W,ei2π3)=limz→ei2π31(2−1)!{(z−ei2π3)2W(z)}(1)=limz→ei2π3{arctan(z2−3)(z−e−2iπ3)2}(1)=limz→ei2π32z1+(z2−3)2×(z−e−2iπ3)2−2(z−e−2iπ3)arctan(z2−3)(z−e−2iπ3)4=limz→ei2π32z(z−e−i2π3)1+(z2−3)2−2arctan(z2−3)(z−e−2iπ3)3=2ei2π3(2isin(2π3)1+(ei4π3−3)2−2arctan(ei4π3−3)(2isin(2π3))3=2i3ei2π31+(ei4π3−3)2−2arctan(ei4π3−3)(i3)3....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com