Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 78694 by TawaTawa last updated on 19/Jan/20

Solve the equation.       x^2  − (y − z)^2   =  10      ... (i)       y^2  − (z − x)^2   =  5      ... (ii)       z^2  − (x  − y)^2   =  2      ... (iii)

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}. \\ $$$$\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \:−\:\left(\mathrm{y}\:−\:\mathrm{z}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{10}\:\:\:\:\:\:...\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\mathrm{y}^{\mathrm{2}} \:−\:\left(\mathrm{z}\:−\:\mathrm{x}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{5}\:\:\:\:\:\:...\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\mathrm{z}^{\mathrm{2}} \:−\:\left(\mathrm{x}\:\:−\:\mathrm{y}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{2}\:\:\:\:\:\:...\:\left(\mathrm{iii}\right) \\ $$

Commented by john santu last updated on 20/Jan/20

(i)+(ii)+(iii)  x^2 +y^2 +z^2 −{(x−y)^2 +(y−z)^2 +(z−x)^2 }=17  2xy+2xz+2yz−(x^2 +y^2 +z^2 )=17 (iv)  (∗) (x+y+z)^2 = x^2 +y^2 +z^2 +2xy+2xz+2yz  x^2 +y^2 +z^2 =(x+y+z)^2 −2xy−2xz−2yz  (iv)4xy+4xz+4yz−(x+y+z)^2 =17

$$\left({i}\right)+\left({ii}\right)+\left({iii}\right) \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} −\left\{\left({x}−{y}\right)^{\mathrm{2}} +\left({y}−{z}\right)^{\mathrm{2}} +\left({z}−{x}\right)^{\mathrm{2}} \right\}=\mathrm{17} \\ $$$$\mathrm{2}{xy}+\mathrm{2}{xz}+\mathrm{2}{yz}−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)=\mathrm{17}\:\left({iv}\right) \\ $$$$\left(\ast\right)\:\left({x}+{y}+{z}\right)^{\mathrm{2}} =\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{2}{xz}+\mathrm{2}{yz} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\left({x}+{y}+{z}\right)^{\mathrm{2}} −\mathrm{2}{xy}−\mathrm{2}{xz}−\mathrm{2}{yz} \\ $$$$\left({iv}\right)\mathrm{4}{xy}+\mathrm{4}{xz}+\mathrm{4}{yz}−\left({x}+{y}+{z}\right)^{\mathrm{2}} =\mathrm{17} \\ $$

Commented by TawaTawa last updated on 20/Jan/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by Rasheed.Sindhi last updated on 20/Jan/20

     x^2  − (y − z)^2   =  10      ... (A)       y^2  − (z − x)^2   =  5      ... (B)       z^2  − (x  − y)^2   =  2      ... (C)  A/B:(((x−y+z)(x+y−z))/((y−z+x)(y+z−x)))=((10)/5)=2              x−y+z=2(y+z−x)              x−y+z=2y+2z−2x)                3x−3y−z=0........∗  A/C:(((x−y+z)(x+y−z))/((z−x+y)(z+x−y)))=((10)/2)=5               ((x+y−z)/(z−x+y))=5           x+y−z=5z−5x+5y           6x−4y−6z=0            3x−2y−3z=0.........∗∗  B/C:(((y−z+x)(y+z−x))/((z−x+y)(z+x−y)))=(5/2)                5(z+x−y)=2(y−z+x)                 3x−7y+3z=0......∗∗∗    ∗ , ∗∗ & ∗∗∗ are simultaneous linear equations  in 3 variables and can be solved   easily:             [((3x−3y−z=0)),((3x−2y−3z=0)),((3x−7y+3z=0)) ]

$$\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \:−\:\left(\mathrm{y}\:−\:\mathrm{z}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{10}\:\:\:\:\:\:...\:\left(\mathrm{A}\right) \\ $$$$\:\:\:\:\:\mathrm{y}^{\mathrm{2}} \:−\:\left(\mathrm{z}\:−\:\mathrm{x}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{5}\:\:\:\:\:\:...\:\left(\mathrm{B}\right) \\ $$$$\:\:\:\:\:\mathrm{z}^{\mathrm{2}} \:−\:\left(\mathrm{x}\:\:−\:\mathrm{y}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{2}\:\:\:\:\:\:...\:\left(\mathrm{C}\right) \\ $$$$\mathrm{A}/\mathrm{B}:\frac{\left(\mathrm{x}−\mathrm{y}+\mathrm{z}\right)\left(\mathrm{x}+\mathrm{y}−\mathrm{z}\right)}{\left(\mathrm{y}−\mathrm{z}+\mathrm{x}\right)\left(\mathrm{y}+\mathrm{z}−\mathrm{x}\right)}=\frac{\mathrm{10}}{\mathrm{5}}=\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}−\mathrm{y}+\mathrm{z}=\mathrm{2}\left(\mathrm{y}+\mathrm{z}−\mathrm{x}\right) \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}−\mathrm{y}+\mathrm{z}=\mathrm{2y}+\mathrm{2z}−\mathrm{2x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3x}−\mathrm{3y}−\mathrm{z}=\mathrm{0}........\ast \\ $$$$\mathrm{A}/\mathrm{C}:\frac{\left(\mathrm{x}−\mathrm{y}+\mathrm{z}\right)\left(\mathrm{x}+\mathrm{y}−\mathrm{z}\right)}{\left(\mathrm{z}−\mathrm{x}+\mathrm{y}\right)\left(\mathrm{z}+\mathrm{x}−\mathrm{y}\right)}=\frac{\mathrm{10}}{\mathrm{2}}=\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{x}+\mathrm{y}−\mathrm{z}}{\mathrm{z}−\mathrm{x}+\mathrm{y}}=\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{x}+\mathrm{y}−\mathrm{z}=\mathrm{5z}−\mathrm{5x}+\mathrm{5y} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{6x}−\mathrm{4y}−\mathrm{6z}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{3x}−\mathrm{2y}−\mathrm{3z}=\mathrm{0}.........\ast\ast \\ $$$$\mathrm{B}/\mathrm{C}:\frac{\left(\mathrm{y}−\mathrm{z}+\mathrm{x}\right)\left(\mathrm{y}+\mathrm{z}−\mathrm{x}\right)}{\left(\mathrm{z}−\mathrm{x}+\mathrm{y}\right)\left(\mathrm{z}+\mathrm{x}−\mathrm{y}\right)}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}\left(\mathrm{z}+\mathrm{x}−\mathrm{y}\right)=\mathrm{2}\left(\mathrm{y}−\mathrm{z}+\mathrm{x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3x}−\mathrm{7y}+\mathrm{3z}=\mathrm{0}......\ast\ast\ast \\ $$$$ \\ $$$$\ast\:,\:\ast\ast\:\&\:\ast\ast\ast\:\mathrm{are}\:\mathrm{simultaneous}\:\mathrm{linear}\:\mathrm{equations} \\ $$$$\mathrm{in}\:\mathrm{3}\:\mathrm{variables}\:\mathrm{and}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\: \\ $$$$\mathrm{easily}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\begin{bmatrix}{\mathrm{3x}−\mathrm{3y}−\mathrm{z}=\mathrm{0}}\\{\mathrm{3x}−\mathrm{2y}−\mathrm{3z}=\mathrm{0}}\\{\mathrm{3x}−\mathrm{7y}+\mathrm{3z}=\mathrm{0}}\end{bmatrix} \\ $$$$\:\:\:\:\:\:\:\: \\ $$

Commented by TawaTawa last updated on 20/Jan/20

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Answered by jagoll last updated on 20/Jan/20

(i) (x+y−z)(x−y+z)=10  (ii) (y+z−x)(y−z+x)=5  (iii) (z+x−y)(z−x+y)=2  (i) = (ii)×(iii)  (x+y−z)(x−y+z)=(y+z−x)(y−z+x)(z+x−y)(z−x+y)

$$\left(\mathrm{i}\right)\:\left(\mathrm{x}+\mathrm{y}−\mathrm{z}\right)\left(\mathrm{x}−\mathrm{y}+\mathrm{z}\right)=\mathrm{10} \\ $$$$\left(\mathrm{ii}\right)\:\left(\mathrm{y}+\mathrm{z}−\mathrm{x}\right)\left(\mathrm{y}−\mathrm{z}+\mathrm{x}\right)=\mathrm{5} \\ $$$$\left(\mathrm{iii}\right)\:\left(\mathrm{z}+\mathrm{x}−\mathrm{y}\right)\left(\mathrm{z}−\mathrm{x}+\mathrm{y}\right)=\mathrm{2} \\ $$$$\left(\mathrm{i}\right)\:=\:\left(\mathrm{ii}\right)×\left(\mathrm{iii}\right) \\ $$$$\left(\mathrm{x}+\mathrm{y}−\mathrm{z}\right)\left(\mathrm{x}−\mathrm{y}+\mathrm{z}\right)=\left(\mathrm{y}+\mathrm{z}−\mathrm{x}\right)\left(\mathrm{y}−\mathrm{z}+\mathrm{x}\right)\left(\mathrm{z}+\mathrm{x}−\mathrm{y}\right)\left(\mathrm{z}−\mathrm{x}+\mathrm{y}\right) \\ $$$$ \\ $$$$ \\ $$

Commented by jagoll last updated on 20/Jan/20

(z+y−x)(z−x+y)=1  ⇒z+y−x=1⇒z+x−y=2⇒y−z+x=5

$$\left(\mathrm{z}+\mathrm{y}−\mathrm{x}\right)\left(\mathrm{z}−\mathrm{x}+\mathrm{y}\right)=\mathrm{1} \\ $$$$\Rightarrow\mathrm{z}+\mathrm{y}−\mathrm{x}=\mathrm{1}\Rightarrow\mathrm{z}+\mathrm{x}−\mathrm{y}=\mathrm{2}\Rightarrow\mathrm{y}−\mathrm{z}+\mathrm{x}=\mathrm{5} \\ $$$$ \\ $$

Commented by mr W last updated on 20/Jan/20

your approch is not “exact” mathematically,  i think.  what if the equations were e.g.:  (i) (x+y−z)(x−y+z)=7  (ii) (y+z−x)(y−z+x)=11  (iii) (z+x−y)(z−x+y)=2 ?  then you can not simply guess the values  for x+y−z etc. and reach the correct  solution by accident.

$${your}\:{approch}\:{is}\:{not}\:``{exact}''\:{mathematically}, \\ $$$${i}\:{think}. \\ $$$${what}\:{if}\:{the}\:{equations}\:{were}\:{e}.{g}.: \\ $$$$\left(\mathrm{i}\right)\:\left(\mathrm{x}+\mathrm{y}−\mathrm{z}\right)\left(\mathrm{x}−\mathrm{y}+\mathrm{z}\right)=\mathrm{7} \\ $$$$\left(\mathrm{ii}\right)\:\left(\mathrm{y}+\mathrm{z}−\mathrm{x}\right)\left(\mathrm{y}−\mathrm{z}+\mathrm{x}\right)=\mathrm{11} \\ $$$$\left(\mathrm{iii}\right)\:\left(\mathrm{z}+\mathrm{x}−\mathrm{y}\right)\left(\mathrm{z}−\mathrm{x}+\mathrm{y}\right)=\mathrm{2}\:? \\ $$$${then}\:{you}\:{can}\:{not}\:{simply}\:{guess}\:{the}\:{values} \\ $$$${for}\:\mathrm{x}+\mathrm{y}−\mathrm{z}\:{etc}.\:{and}\:{reach}\:{the}\:{correct} \\ $$$${solution}\:{by}\:{accident}. \\ $$

Commented by jagoll last updated on 20/Jan/20

see the result of equation (i) = (ii)×(iii)

$$\mathrm{see}\:\mathrm{the}\:\mathrm{result}\:\mathrm{of}\:\mathrm{equation}\:\left(\mathrm{i}\right)\:=\:\left(\mathrm{ii}\right)×\left(\mathrm{iii}\right) \\ $$

Commented by jagoll last updated on 20/Jan/20

from the result of that equation  , we get a value (z+y−x))(z−x+y)=1

$$\mathrm{from}\:\mathrm{the}\:\mathrm{result}\:\mathrm{of}\:\mathrm{that}\:\mathrm{equation} \\ $$$$\left.,\:\mathrm{we}\:\mathrm{get}\:\mathrm{a}\:\mathrm{value}\:\left(\mathrm{z}+\mathrm{y}−\mathrm{x}\right)\right)\left(\mathrm{z}−\mathrm{x}+\mathrm{y}\right)=\mathrm{1} \\ $$

Commented by jagoll last updated on 20/Jan/20

that finally we get   −x+y+z=1 , x−y+z=2 , x+y−z=5

$$\mathrm{that}\:\mathrm{finally}\:\mathrm{we}\:\mathrm{get}\: \\ $$$$−\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{1}\:,\:\mathrm{x}−\mathrm{y}+\mathrm{z}=\mathrm{2}\:,\:\mathrm{x}+\mathrm{y}−\mathrm{z}=\mathrm{5} \\ $$

Commented by jagoll last updated on 20/Jan/20

don′t play that guess sir. there  is process, which i shorten the  process

$$\mathrm{don}'\mathrm{t}\:\mathrm{play}\:\mathrm{that}\:\mathrm{guess}\:\mathrm{sir}.\:\mathrm{there} \\ $$$$\mathrm{is}\:\mathrm{process},\:\mathrm{which}\:\mathrm{i}\:\mathrm{shorten}\:\mathrm{the} \\ $$$$\mathrm{process} \\ $$

Commented by mr W last updated on 20/Jan/20

maybe i didn′t unterstand your method  correctly. i thought you just guess the  following values:  ⇒z+y−x=1⇒z+x−y=2⇒y−z+x=5 ?  or can you share how you get them?    besides, the original equations are 3  quadratical relations between x,y,z.  but you could reduce them to 3 linear   relations. how did you get this?    and can you find the solution using  your method if the equations are:  (i) (x+y−z)(x−y+z)=7  (ii) (y+z−x)(y−z+x)=11  (iii) (z+x−y)(z−x+y)=2    if there is an easier method, i want to  learn.

$${maybe}\:{i}\:{didn}'{t}\:{unterstand}\:{your}\:{method} \\ $$$${correctly}.\:{i}\:{thought}\:{you}\:{just}\:{guess}\:{the} \\ $$$${following}\:{values}: \\ $$$$\Rightarrow\boldsymbol{\mathrm{z}}+\boldsymbol{\mathrm{y}}−\boldsymbol{\mathrm{x}}=\mathrm{1}\Rightarrow\boldsymbol{\mathrm{z}}+\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{y}}=\mathrm{2}\Rightarrow\boldsymbol{\mathrm{y}}−\boldsymbol{\mathrm{z}}+\boldsymbol{\mathrm{x}}=\mathrm{5}\:? \\ $$$${or}\:{can}\:{you}\:{share}\:{how}\:{you}\:{get}\:{them}? \\ $$$$ \\ $$$${besides},\:{the}\:{original}\:{equations}\:{are}\:\mathrm{3} \\ $$$${quadratical}\:{relations}\:{between}\:{x},{y},{z}. \\ $$$${but}\:{you}\:{could}\:{reduce}\:{them}\:{to}\:\mathrm{3}\:{linear}\: \\ $$$${relations}.\:{how}\:{did}\:{you}\:{get}\:{this}? \\ $$$$ \\ $$$${and}\:{can}\:{you}\:{find}\:{the}\:{solution}\:{using} \\ $$$${your}\:{method}\:{if}\:{the}\:{equations}\:{are}: \\ $$$$\left(\mathrm{i}\right)\:\left(\mathrm{x}+\mathrm{y}−\mathrm{z}\right)\left(\mathrm{x}−\mathrm{y}+\mathrm{z}\right)=\mathrm{7} \\ $$$$\left(\mathrm{ii}\right)\:\left(\mathrm{y}+\mathrm{z}−\mathrm{x}\right)\left(\mathrm{y}−\mathrm{z}+\mathrm{x}\right)=\mathrm{11} \\ $$$$\left(\mathrm{iii}\right)\:\left(\mathrm{z}+\mathrm{x}−\mathrm{y}\right)\left(\mathrm{z}−\mathrm{x}+\mathrm{y}\right)=\mathrm{2} \\ $$$$ \\ $$$${if}\:{there}\:{is}\:{an}\:{easier}\:{method},\:{i}\:{want}\:{to} \\ $$$${learn}.\: \\ $$

Commented by jagoll last updated on 20/Jan/20

ha ha . don′t setence like that  sir. i am not a psychic who can  guess the answers

$$\mathrm{ha}\:\mathrm{ha}\:.\:\mathrm{don}'\mathrm{t}\:\mathrm{setence}\:\mathrm{like}\:\mathrm{that} \\ $$$$\mathrm{sir}.\:\mathrm{i}\:\mathrm{am}\:\mathrm{not}\:\mathrm{a}\:\mathrm{psychic}\:\mathrm{who}\:\mathrm{can} \\ $$$$\mathrm{guess}\:\mathrm{the}\:\mathrm{answers} \\ $$

Commented by jagoll last updated on 20/Jan/20

Commented by mr W last updated on 20/Jan/20

since you got the correct solution  much more directly and faster, i  was very interested and wanted to  learn how and sincerely asked you  for more details.  but if you don′t want to tell more about  your secret, i respect it sir. thank you!

$${since}\:{you}\:{got}\:{the}\:{correct}\:{solution} \\ $$$${much}\:{more}\:{directly}\:{and}\:{faster},\:{i} \\ $$$${was}\:{very}\:{interested}\:{and}\:{wanted}\:{to} \\ $$$${learn}\:{how}\:{and}\:{sincerely}\:{asked}\:{you} \\ $$$${for}\:{more}\:{details}. \\ $$$${but}\:{if}\:{you}\:{don}'{t}\:{want}\:{to}\:{tell}\:{more}\:{about} \\ $$$${your}\:{secret},\:{i}\:{respect}\:{it}\:{sir}.\:{thank}\:{you}! \\ $$

Commented by jagoll last updated on 20/Jan/20

look sir

$$\mathrm{look}\:\mathrm{sir} \\ $$

Commented by mr W last updated on 20/Jan/20

thanks alot sir!

$${thanks}\:{alot}\:{sir}! \\ $$

Commented by jagoll last updated on 20/Jan/20

yes sir. i didn′t mean to not  want to explain it, but i think  that asking questions needs  a quick response so i cut some of   the solutions. thank you sir, for  this discussion. i like

$$\mathrm{yes}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{didn}'\mathrm{t}\:\mathrm{mean}\:\mathrm{to}\:\mathrm{not} \\ $$$$\mathrm{want}\:\mathrm{to}\:\mathrm{explain}\:\mathrm{it},\:\mathrm{but}\:\mathrm{i}\:\mathrm{think} \\ $$$$\mathrm{that}\:\mathrm{asking}\:\mathrm{questions}\:\mathrm{needs} \\ $$$$\mathrm{a}\:\mathrm{quick}\:\mathrm{response}\:\mathrm{so}\:\mathrm{i}\:\mathrm{cut}\:\mathrm{some}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{solutions}.\:\mathrm{thank}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{for} \\ $$$$\mathrm{this}\:\mathrm{discussion}.\:\mathrm{i}\:\mathrm{like} \\ $$

Commented by mr W last updated on 20/Jan/20

thanks alot again! now i understand  your approach. i think it has worked  due to the fact that (i)=(ii)×(iii), i.e.  10=5×2. if we had other values, e.g.  (i)=7, (ii)=11, (iii)=2, we can′t get  the value of y+z−x directly.

$${thanks}\:{alot}\:{again}!\:{now}\:{i}\:{understand} \\ $$$${your}\:{approach}.\:{i}\:{think}\:{it}\:{has}\:{worked} \\ $$$${due}\:{to}\:{the}\:{fact}\:{that}\:\left({i}\right)=\left({ii}\right)×\left({iii}\right),\:{i}.{e}. \\ $$$$\mathrm{10}=\mathrm{5}×\mathrm{2}.\:{if}\:{we}\:{had}\:{other}\:{values},\:{e}.{g}. \\ $$$$\left({i}\right)=\mathrm{7},\:\left({ii}\right)=\mathrm{11},\:\left({iii}\right)=\mathrm{2},\:{we}\:{can}'{t}\:{get} \\ $$$${the}\:{value}\:{of}\:{y}+{z}−{x}\:{directly}. \\ $$

Commented by TawaTawa last updated on 20/Jan/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by john santu last updated on 21/Jan/20

(i) = (7/2)×(iii)  (x+y−z)(x−y+z)=(7/2)(z+x−y)(z−x+y)  2(x+y−z)(x−y+z)=7(z+x−y)(z−x+y)  (x−y+z){2x+2y−2z−7z+7x−7y}=0  (x−y+z)(9x−5y−9z)=0  x−y+z=0 ∨9x−5y−9z=0  (ii)=((11)/2)×(iii)  (y+z−x)(y−z+x)=((11)/2)(z+x−y)(z−x+y)  2(y+z−x)(y−z+x)=11(z+x−y)(z−x+y)  (z+y−x){2x+2y−2z−11z−11x+11y}=0  (z+y−x)(−9x+13y−13z)=0  z+y−x=0 ∨ −9x+13y−13z=0

$$\left({i}\right)\:=\:\frac{\mathrm{7}}{\mathrm{2}}×\left({iii}\right) \\ $$$$\left({x}+{y}−{z}\right)\left({x}−{y}+{z}\right)=\frac{\mathrm{7}}{\mathrm{2}}\left({z}+{x}−{y}\right)\left({z}−{x}+{y}\right) \\ $$$$\mathrm{2}\left({x}+{y}−{z}\right)\left({x}−{y}+{z}\right)=\mathrm{7}\left({z}+{x}−{y}\right)\left({z}−{x}+{y}\right) \\ $$$$\left({x}−{y}+{z}\right)\left\{\mathrm{2}{x}+\mathrm{2}{y}−\mathrm{2}{z}−\mathrm{7}{z}+\mathrm{7}{x}−\mathrm{7}{y}\right\}=\mathrm{0} \\ $$$$\left({x}−{y}+{z}\right)\left(\mathrm{9}{x}−\mathrm{5}{y}−\mathrm{9}{z}\right)=\mathrm{0} \\ $$$${x}−{y}+{z}=\mathrm{0}\:\vee\mathrm{9}{x}−\mathrm{5}{y}−\mathrm{9}{z}=\mathrm{0} \\ $$$$\left({ii}\right)=\frac{\mathrm{11}}{\mathrm{2}}×\left({iii}\right) \\ $$$$\left({y}+{z}−{x}\right)\left({y}−{z}+{x}\right)=\frac{\mathrm{11}}{\mathrm{2}}\left({z}+{x}−{y}\right)\left({z}−{x}+{y}\right) \\ $$$$\mathrm{2}\left({y}+{z}−{x}\right)\left({y}−{z}+{x}\right)=\mathrm{11}\left({z}+{x}−{y}\right)\left({z}−{x}+{y}\right) \\ $$$$\left({z}+{y}−{x}\right)\left\{\mathrm{2}{x}+\mathrm{2}{y}−\mathrm{2}{z}−\mathrm{11}{z}−\mathrm{11}{x}+\mathrm{11}{y}\right\}=\mathrm{0} \\ $$$$\left({z}+{y}−{x}\right)\left(−\mathrm{9}{x}+\mathrm{13}{y}−\mathrm{13}{z}\right)=\mathrm{0} \\ $$$${z}+{y}−{x}=\mathrm{0}\:\vee\:−\mathrm{9}{x}+\mathrm{13}{y}−\mathrm{13}{z}=\mathrm{0} \\ $$

Commented by john santu last updated on 21/Jan/20

to Mr W.  i am interested in the questions   in you made and solve them   with the concept of MrJagoll.  i think the concept of Mr Jagoll  is not a mathematical concept  but a tactical thinking concept.  i appreciate Mr Jagoll, because  no one in the world can argue  10 = 5×2. i′m not on anyone′s  side, but i try to express my  thoughts that mathematics  must be able to make someone  creative in solving problems.  thanks you

$${to}\:{Mr}\:{W}. \\ $$$${i}\:{am}\:{interested}\:{in}\:{the}\:{questions}\: \\ $$$${in}\:{you}\:{made}\:{and}\:{solve}\:{them}\: \\ $$$${with}\:{the}\:{concept}\:{of}\:{MrJagoll}. \\ $$$${i}\:{think}\:{the}\:{concept}\:{of}\:{Mr}\:{Jagoll} \\ $$$${is}\:{not}\:{a}\:{mathematical}\:{concept} \\ $$$${but}\:{a}\:{tactical}\:{thinking}\:{concept}. \\ $$$${i}\:{appreciate}\:{Mr}\:{Jagoll},\:{because} \\ $$$${no}\:{one}\:{in}\:{the}\:{world}\:{can}\:{argue} \\ $$$$\mathrm{10}\:=\:\mathrm{5}×\mathrm{2}.\:{i}'{m}\:{not}\:{on}\:{anyone}'{s} \\ $$$${side},\:{but}\:{i}\:{try}\:{to}\:{express}\:{my} \\ $$$${thoughts}\:{that}\:{mathematics} \\ $$$${must}\:{be}\:{able}\:{to}\:{make}\:{someone} \\ $$$${creative}\:{in}\:{solving}\:{problems}. \\ $$$${thanks}\:{you} \\ $$$$ \\ $$

Commented by mr W last updated on 21/Jan/20

yes sir! being creative is also that  what i appreciate and what i try to be.

$${yes}\:{sir}!\:{being}\:{creative}\:{is}\:{also}\:{that} \\ $$$${what}\:{i}\:{appreciate}\:{and}\:{what}\:{i}\:{try}\:{to}\:{be}.\: \\ $$

Answered by jagoll last updated on 20/Jan/20

we get x=(7/2) , y = 3 and z =(3/2)

$$\mathrm{we}\:\mathrm{get}\:\mathrm{x}=\frac{\mathrm{7}}{\mathrm{2}}\:,\:\mathrm{y}\:=\:\mathrm{3}\:\mathrm{and}\:\mathrm{z}\:=\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Commented by jagoll last updated on 20/Jan/20

check   x^2 −(y−z)^2 = ((49)/4)−(3−(3/2))^2 =  ((49)/4)−((9/4))=10. satisfy the equation

$$\mathrm{check}\: \\ $$$$\mathrm{x}^{\mathrm{2}} −\left(\mathrm{y}−\mathrm{z}\right)^{\mathrm{2}} =\:\frac{\mathrm{49}}{\mathrm{4}}−\left(\mathrm{3}−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} = \\ $$$$\frac{\mathrm{49}}{\mathrm{4}}−\left(\frac{\mathrm{9}}{\mathrm{4}}\right)=\mathrm{10}.\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation} \\ $$

Answered by mr W last updated on 20/Jan/20

(ii)+(iii):  y^2 +z^2 −z^2 +2xz−x^2 −x^2 +2yx−y^2 =7  2xz−2x^2 +2yx=7  ⇒y+z=(7/(2x))+x  (ii)−(iii):  y^2 −z^2 −z^2 +2xz−x^2 +x^2 −2yx+y^2 =3  2(y^2 −z^2 )−2x(y−z)=3  2(y−z)(y+z−x)=3  2(y−z)((7/(2x)))=3  ⇒y−z=((3x)/7)  put this into (i):  x^2 −(((3x)/7))^2 =10  ⇒x=±(√((10×7^2 )/(7^2 −3^2 )))=±(7/2)  y=(1/2)((7/(2x))+x+((3x)/7))  ⇒y=±(1/2)(((7×2)/(2×7))+(7/2)+((3×7)/(7×2)))=±3  z=(1/2)((7/(2x))+x−((3x)/7))  ⇒z=±(1/2)(((7×2)/(2×7))+(7/2)−((3×7)/(7×2)))=±(3/2)

$$\left({ii}\right)+\left({iii}\right): \\ $$$${y}^{\mathrm{2}} +{z}^{\mathrm{2}} −{z}^{\mathrm{2}} +\mathrm{2}{xz}−{x}^{\mathrm{2}} −{x}^{\mathrm{2}} +\mathrm{2}{yx}−{y}^{\mathrm{2}} =\mathrm{7} \\ $$$$\mathrm{2}{xz}−\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{yx}=\mathrm{7} \\ $$$$\Rightarrow{y}+{z}=\frac{\mathrm{7}}{\mathrm{2}{x}}+{x} \\ $$$$\left({ii}\right)−\left({iii}\right): \\ $$$${y}^{\mathrm{2}} −{z}^{\mathrm{2}} −{z}^{\mathrm{2}} +\mathrm{2}{xz}−{x}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{2}{yx}+{y}^{\mathrm{2}} =\mathrm{3} \\ $$$$\mathrm{2}\left({y}^{\mathrm{2}} −{z}^{\mathrm{2}} \right)−\mathrm{2}{x}\left({y}−{z}\right)=\mathrm{3} \\ $$$$\mathrm{2}\left({y}−{z}\right)\left({y}+{z}−{x}\right)=\mathrm{3} \\ $$$$\mathrm{2}\left({y}−{z}\right)\left(\frac{\mathrm{7}}{\mathrm{2}{x}}\right)=\mathrm{3} \\ $$$$\Rightarrow{y}−{z}=\frac{\mathrm{3}{x}}{\mathrm{7}} \\ $$$${put}\:{this}\:{into}\:\left({i}\right): \\ $$$${x}^{\mathrm{2}} −\left(\frac{\mathrm{3}{x}}{\mathrm{7}}\right)^{\mathrm{2}} =\mathrm{10} \\ $$$$\Rightarrow{x}=\pm\sqrt{\frac{\mathrm{10}×\mathrm{7}^{\mathrm{2}} }{\mathrm{7}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }}=\pm\frac{\mathrm{7}}{\mathrm{2}} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{7}}{\mathrm{2}{x}}+{x}+\frac{\mathrm{3}{x}}{\mathrm{7}}\right) \\ $$$$\Rightarrow{y}=\pm\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{7}×\mathrm{2}}{\mathrm{2}×\mathrm{7}}+\frac{\mathrm{7}}{\mathrm{2}}+\frac{\mathrm{3}×\mathrm{7}}{\mathrm{7}×\mathrm{2}}\right)=\pm\mathrm{3} \\ $$$${z}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{7}}{\mathrm{2}{x}}+{x}−\frac{\mathrm{3}{x}}{\mathrm{7}}\right) \\ $$$$\Rightarrow{z}=\pm\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{7}×\mathrm{2}}{\mathrm{2}×\mathrm{7}}+\frac{\mathrm{7}}{\mathrm{2}}−\frac{\mathrm{3}×\mathrm{7}}{\mathrm{7}×\mathrm{2}}\right)=\pm\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Commented by jagoll last updated on 20/Jan/20

i only took 1 side of the solution. good  sir

$$\mathrm{i}\:\mathrm{only}\:\mathrm{took}\:\mathrm{1}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solution}.\:\mathrm{good} \\ $$$$\mathrm{sir} \\ $$

Commented by jagoll last updated on 20/Jan/20

this settlement is good sir. i have  the view according to my  father′s military upbringing  in solving problems to be  fast and on target.

$$\mathrm{this}\:\mathrm{settlement}\:\mathrm{is}\:\mathrm{good}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{have} \\ $$$$\mathrm{the}\:\mathrm{view}\:\mathrm{according}\:\mathrm{to}\:\mathrm{my} \\ $$$$\mathrm{father}'\mathrm{s}\:\mathrm{military}\:\mathrm{upbringing} \\ $$$$\mathrm{in}\:\mathrm{solving}\:\mathrm{problems}\:\mathrm{to}\:\mathrm{be} \\ $$$$\mathrm{fast}\:\mathrm{and}\:\mathrm{on}\:\mathrm{target}. \\ $$

Commented by TawaTawa last updated on 20/Jan/20

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by mr W last updated on 20/Jan/20

my solution is valid generally for any  values of the equations:  (i):       .....=a  (ii):       .....=b  (iii):       .....=c  ⇒x=±(√((a(b+c)^2 )/(4bc)))  ⇒y=(1/2)(((b+c)/(2x))+((2bx)/(b+c)))  ⇒z=(1/2)(((b+c)/(2x))+((2cx)/(b+c)))

$${my}\:{solution}\:{is}\:{valid}\:{generally}\:{for}\:{any} \\ $$$${values}\:{of}\:{the}\:{equations}: \\ $$$$\left({i}\right):\:\:\:\:\:\:\:.....={a} \\ $$$$\left({ii}\right):\:\:\:\:\:\:\:.....={b} \\ $$$$\left({iii}\right):\:\:\:\:\:\:\:.....={c} \\ $$$$\Rightarrow{x}=\pm\sqrt{\frac{{a}\left({b}+{c}\right)^{\mathrm{2}} }{\mathrm{4}{bc}}} \\ $$$$\Rightarrow{y}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{b}+{c}}{\mathrm{2}{x}}+\frac{\mathrm{2}{bx}}{{b}+{c}}\right) \\ $$$$\Rightarrow{z}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{b}+{c}}{\mathrm{2}{x}}+\frac{\mathrm{2}{cx}}{{b}+{c}}\right) \\ $$

Commented by TawaTawa last updated on 20/Jan/20

Wow, God bless you sir

$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mr W last updated on 20/Jan/20

absolutely sir!

$${absolutely}\:{sir}! \\ $$

Answered by MJS last updated on 20/Jan/20

let x=u−v∧y=u+v  (1)  −(2u−z)(2v−z)=10  (2)  (2u−z)(2v+z)=5  (3)  −(2v+z)(2v−z)=2  (1)  v=((2uz−z^2 −10)/(2(2u−z)))  (2)  2(2uz−z^2 −5)=5 ⇒ u=((2z^2 +15)/(4z))  ⇒ v=−(z/6)  (3)  (8/9)z^2 =2 ⇒ z=±(3/2)  ⇒ u=±((13)/4)∧v=∓(1/4)  ⇒ x=±(7/2)∧y=±3

$$\mathrm{let}\:{x}={u}−{v}\wedge{y}={u}+{v} \\ $$$$\left(\mathrm{1}\right)\:\:−\left(\mathrm{2}{u}−{z}\right)\left(\mathrm{2}{v}−{z}\right)=\mathrm{10} \\ $$$$\left(\mathrm{2}\right)\:\:\left(\mathrm{2}{u}−{z}\right)\left(\mathrm{2}{v}+{z}\right)=\mathrm{5} \\ $$$$\left(\mathrm{3}\right)\:\:−\left(\mathrm{2}{v}+{z}\right)\left(\mathrm{2}{v}−{z}\right)=\mathrm{2} \\ $$$$\left(\mathrm{1}\right)\:\:{v}=\frac{\mathrm{2}{uz}−{z}^{\mathrm{2}} −\mathrm{10}}{\mathrm{2}\left(\mathrm{2}{u}−{z}\right)} \\ $$$$\left(\mathrm{2}\right)\:\:\mathrm{2}\left(\mathrm{2}{uz}−{z}^{\mathrm{2}} −\mathrm{5}\right)=\mathrm{5}\:\Rightarrow\:{u}=\frac{\mathrm{2}{z}^{\mathrm{2}} +\mathrm{15}}{\mathrm{4}{z}} \\ $$$$\Rightarrow\:{v}=−\frac{{z}}{\mathrm{6}} \\ $$$$\left(\mathrm{3}\right)\:\:\frac{\mathrm{8}}{\mathrm{9}}{z}^{\mathrm{2}} =\mathrm{2}\:\Rightarrow\:{z}=\pm\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\:{u}=\pm\frac{\mathrm{13}}{\mathrm{4}}\wedge{v}=\mp\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow\:{x}=\pm\frac{\mathrm{7}}{\mathrm{2}}\wedge{y}=\pm\mathrm{3} \\ $$

Commented by TawaTawa last updated on 20/Jan/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by behi83417@gmail.com last updated on 20/Jan/20

s=x+y+z  ⇒ { (((x+y−z)(x+z−y)=10)),(((y+z−x)(y+x−z)=5)),(((z+x−y)(z+y−x)=2)) :}  ⇒ { (((s−2z)(s−2y)=10)),(((s−2x)(s−2z)=5)),(((s−2y)(s−2x)=2)) :}  ⇒(s−2x)(s−2y)(s−2z)=±10  [(s−2x)(10)=±10⇒s−2x=±1  [(s−2y)(5)=±10⇒   s−2y=±2  [(s−2z)(2)=±10⇒    s−2z=±5  ⇒ { ((y+z−x=±1)),((x+z−y=±2)),((x+y−z=±5)) :}⇒x+y+z=s=±8  ⇒ { ((2x=s∓1=±8∓1=±7⇒x=±(7/2))),((2y=s∓2=±8∓2=±6⇒y=±3)),((2z=s∓5=±8∓5=±3⇒z=±(3/2))) :}

$$\mathrm{s}=\mathrm{x}+\mathrm{y}+\mathrm{z} \\ $$$$\Rightarrow\begin{cases}{\left(\mathrm{x}+\mathrm{y}−\mathrm{z}\right)\left(\mathrm{x}+\mathrm{z}−\mathrm{y}\right)=\mathrm{10}}\\{\left(\mathrm{y}+\mathrm{z}−\mathrm{x}\right)\left(\mathrm{y}+\mathrm{x}−\mathrm{z}\right)=\mathrm{5}}\\{\left(\mathrm{z}+\mathrm{x}−\mathrm{y}\right)\left(\mathrm{z}+\mathrm{y}−\mathrm{x}\right)=\mathrm{2}}\end{cases} \\ $$$$\Rightarrow\begin{cases}{\left(\mathrm{s}−\mathrm{2z}\right)\left(\mathrm{s}−\mathrm{2y}\right)=\mathrm{10}}\\{\left(\mathrm{s}−\mathrm{2x}\right)\left(\mathrm{s}−\mathrm{2z}\right)=\mathrm{5}}\\{\left(\mathrm{s}−\mathrm{2y}\right)\left(\mathrm{s}−\mathrm{2x}\right)=\mathrm{2}}\end{cases} \\ $$$$\Rightarrow\left(\mathrm{s}−\mathrm{2x}\right)\left(\mathrm{s}−\mathrm{2y}\right)\left(\mathrm{s}−\mathrm{2z}\right)=\pm\mathrm{10} \\ $$$$\left[\left(\mathrm{s}−\mathrm{2x}\right)\left(\mathrm{10}\right)=\pm\mathrm{10}\Rightarrow\mathrm{s}−\mathrm{2x}=\pm\mathrm{1}\right. \\ $$$$\left[\left(\mathrm{s}−\mathrm{2y}\right)\left(\mathrm{5}\right)=\pm\mathrm{10}\Rightarrow\:\:\:\mathrm{s}−\mathrm{2y}=\pm\mathrm{2}\right. \\ $$$$\left[\left(\mathrm{s}−\mathrm{2z}\right)\left(\mathrm{2}\right)=\pm\mathrm{10}\Rightarrow\:\:\:\:\mathrm{s}−\mathrm{2z}=\pm\mathrm{5}\right. \\ $$$$\Rightarrow\begin{cases}{\mathrm{y}+\mathrm{z}−\mathrm{x}=\pm\mathrm{1}}\\{\mathrm{x}+\mathrm{z}−\mathrm{y}=\pm\mathrm{2}}\\{\mathrm{x}+\mathrm{y}−\mathrm{z}=\pm\mathrm{5}}\end{cases}\Rightarrow\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{s}=\pm\mathrm{8} \\ $$$$\Rightarrow\begin{cases}{\mathrm{2x}=\mathrm{s}\mp\mathrm{1}=\pm\mathrm{8}\mp\mathrm{1}=\pm\mathrm{7}\Rightarrow\mathrm{x}=\pm\frac{\mathrm{7}}{\mathrm{2}}}\\{\mathrm{2y}=\mathrm{s}\mp\mathrm{2}=\pm\mathrm{8}\mp\mathrm{2}=\pm\mathrm{6}\Rightarrow\mathrm{y}=\pm\mathrm{3}}\\{\mathrm{2z}=\mathrm{s}\mp\mathrm{5}=\pm\mathrm{8}\mp\mathrm{5}=\pm\mathrm{3}\Rightarrow\mathrm{z}=\pm\frac{\mathrm{3}}{\mathrm{2}}}\end{cases} \\ $$

Commented by TawaTawa last updated on 20/Jan/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com