Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 78708 by abdomathmax last updated on 20/Jan/20

calculate ∫_0 ^∞  (e^(−x) /x)(sinx)^(2 ) dx

calculate0exx(sinx)2dx

Commented by mathmax by abdo last updated on 21/Jan/20

let f(t) =∫_0 ^∞   (e^(−xt) /x)sin^2 x dx  with t >0  we have  f^′ (t) =−∫_0 ^∞   e^(−xt) sin^2 xdx =−∫_0 ^∞  e^(−xt) (1−cos(2x))dx  =(1/2)∫_0 ^∞  e^(−xt)  cos(2x)dx−(1/2)∫_0 ^∞  e^(−xt)  dx  ∫_0 ^∞  e^(−xt) dx =[−(1/t)e^(−xt) ]_(x=0) ^∞  =(1/t)  ∫_0 ^∞  e^(−xt)  cos(2x)dx =Re(∫_0 ^∞  e^(−xt+2ix) dx)  ∫_0 ^∞  e^((−t+2i)x) dx =[(1/(−t+2i)) e^((−t+2i)x) ]_0 ^∞ =−(1/(−t+2i)) =(1/(t−2i)) =((t+2i)/(t^2  +4)) ⇒  ∫_0 ^∞  e^(−xt)  cos(2x)dx =(t/(t^2  +4)) ⇒2f^′ (t)=(t/(t^2  +4))−(1/t) ⇒  2f(t) =∫_1 ^t   (u/(u^2  +4))−∫_1 ^t  (du/u) +c =(1/2)[ln(u^2  +4)]_1 ^t −lnt  +c ⇒    f(t)=(1/4){ln(t^2  +4)−ln(5)} −(1/2)ln(t) +c  ∃m> /∫_0 ^∞ ∣((e^(−xt) sin^2 x)/x)∣dx≤m∫_0 ^∞ e^(−xt) dx =(m/t)→0(t→+∞) ⇒  lim_(t→+∞) f(t)=0 ⇒lim_(t→+∞) ln((((^4 (√(t^2  +1)))/(√t))) −(1/4)ln(5)+c =0 ⇒  c=(1/4)ln(5) ⇒f(t)=(1/4)ln(t^2  +4)−(1/2)ln(t)  (t>0)  ∫_0 ^∞   (e^(−x) /x)sin^2 x dx =f(1) =((ln(5))/4)

letf(t)=0extxsin2xdxwitht>0wehavef(t)=0extsin2xdx=0ext(1cos(2x))dx=120extcos(2x)dx120extdx0extdx=[1text]x=0=1t0extcos(2x)dx=Re(0ext+2ixdx)0e(t+2i)xdx=[1t+2ie(t+2i)x]0=1t+2i=1t2i=t+2it2+40extcos(2x)dx=tt2+42f(t)=tt2+41t2f(t)=1tuu2+41tduu+c=12[ln(u2+4)]1tlnt+cf(t)=14{ln(t2+4)ln(5)}12ln(t)+cm>/0extsin2xxdxm0extdx=mt0(t+)limt+f(t)=0limt+ln((4t2+1t)14ln(5)+c=0c=14ln(5)f(t)=14ln(t2+4)12ln(t)(t>0)0exxsin2xdx=f(1)=ln(5)4

Answered by mind is power last updated on 20/Jan/20

existence in 0 sin^2 (x)∼x^2   e^(−x) x  is integrable  in ∞   ((sin^2 (x))/x)<1⇒e^(−x) ((sin^2 (x))/x)<e^(−x)   obvious  let f(t)=∫_0 ^(+∞) (e^(−xt) /x)sin^2 (x)dx,t∈[1,∞[=I  f well definde C_∞   in I   lim_(t→∞) f(t)=0  proof  u=xt⇒∫_0 ^(+∞) (e^(−u) /u)sin^2 ((u/t))du  ∣sin((u/t))∣≤(u/t)⇒∫_0 ^(+∞) (e^(−u) /u)sin^2 ((u/t))du≤∫_0 ^(+∞) (e^(−u) /u)(u^2 /t^2 )du=(1/t^2 )∫_0 ^(+∞) ue^(−u) du=((Γ(1))/t^2 )  →0  as t→∞  (∂f/∂t)=∫_0 ^(+∞) −e^(−xt) sin^2 (x)dx=−∫_0 ^(+∞) e^(−xt) (((1−cos(2x))/2))dx  =−(1/2)∫_0 ^(+∞) e^(−xt) dx+(1/2)∫_0 ^(+∞) e^(−xt) cos(2x)dx  =(1/2)[(e^(−xt) /t)]_0 ^(+∞) +(1/2)Re{∫_0 ^(+∞) e^(x(−t+2i)) dt}  =−(1/(2t))+(1/2)Re[(e^(x(−t+2i)) /(−t+2i))]_0 ^(+∞)   =−(1/(2t))+(1/2)Re[(1/(t−2i))]  =−(1/(2t))+(1/2)(t/(t^2 +4))=f′(t)  f(1)=∫_∞ ^1 f′(t)dt=∫_∞ ^1 {−(1/(2t))+(t/(2(t^2 +4)))}dt=lim_(x→∞) [_x ^1 −(1/2)ln(t)+(1/4)ln(t^2 +4)]  =lim_(x→∞) [_x ^1 (1/4)ln(((t^2 +4)/t^2 ))]=((ln(5))/4)−lim_(x→∞) ((ln(((x^2 +4)/x^2 )))/4)=((ln(5))/4)

existencein0sin2(x)x2exxisintegrableinsin2(x)x<1exsin2(x)x<exobviousletf(t)=0+extxsin2(x)dx,t[1,[=IfwelldefindeCinIlimft(t)=0proofu=xt0+euusin2(ut)dusin(ut)∣⩽ut0+euusin2(ut)du0+euuu2t2du=1t20+ueudu=Γ(1)t20astft=0+extsin2(x)dx=0+ext(1cos(2x)2)dx=120+extdx+120+extcos(2x)dx=12[extt]0++12Re{0+ex(t+2i)dt}=12t+12Re[ex(t+2i)t+2i]0+=12t+12Re[1t2i]=12t+12tt2+4=f(t)f(1)=1f(t)dt=1{12t+t2(t2+4)}dt=limx[x112ln(t)+14ln(t2+4)]=limx[x114ln(t2+4t2)]=ln(5)4limxln(x2+4x2)4=ln(5)4

Commented by mathmax by abdo last updated on 20/Jan/20

thank you sir.

thankyousir.

Commented by mind is power last updated on 21/Jan/20

y′re welcom

yrewelcom

Answered by M±th+et£s last updated on 20/Jan/20

L{sin^2 (x)}=(1/2)L{(1−cos2x)}=(1/2){(1/s)−(s/(s^2 +4))}  F(s)=L{((sin^2 x U(x))/x)}=∫_s ^∞ (1/2){(1/s) −(s/(s^2 +4))}ds  =(1/2)[ln(s)−(1/2)ln(s^2 +4)]_s ^∞ =(1/4)[ln()]_s ^∞   =((−1)/4) ((s^2 /(s^2 +4)))  ∫_0 ^∞ ((sin^2 (x) e^(−x) )/x) = F(1)=−(1/4)ln((1/5))=(1/4) ln(5)

L{sin2(x)}=12L{(1cos2x)}=12{1sss2+4}F(s)=L{sin2xU(x)x}=s12{1sss2+4}ds=12[ln(s)12ln(s2+4)]s=14[ln()]s=14(s2s2+4)0sin2(x)exx=F(1)=14ln(15)=14ln(5)

Commented by M±th+et£s last updated on 20/Jan/20

so sorry there is a typo  (1/4)[ln((s^2 /(s^2 +4)))]_s ^∞

sosorrythereisatypo14[ln(s2s2+4)]s

Terms of Service

Privacy Policy

Contact: info@tinkutara.com