Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 78797 by TawaTawa last updated on 20/Jan/20

Show that:    ∫_( 0) ^( ∞)  (x^3 /(e^x  − 1)) dx    =   (π^4 /(15))

$$\mathrm{Show}\:\mathrm{that}:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{e}^{\mathrm{x}} \:−\:\mathrm{1}}\:\mathrm{dx}\:\:\:\:=\:\:\:\frac{\pi^{\mathrm{4}} }{\mathrm{15}} \\ $$

Answered by mind is power last updated on 20/Jan/20

=∫_0 ^(+∞) ((x^3 e^(−x) )/(1−e^(−x) ))dx  (1/(1−e^(−x) ))=Σ_(k≥0) e^(−kx)   ⇒=∫_0 ^(+∞) x^3 e^(−x) Σ_(k≥0) e^(−kx) dx  =∫_0 ^(+∞) x^3 Σ_(k≥0) e^(−(1+k)x)   =Σ∫_0 ^(+∞) x^3 e^(−(1+k)x) dx  u=(1+k)x⇒dx=(du/(1+k))  =Σ_(k≥0) ∫_0 ^(+∞) (u^3 /((1+k)^4 ))e^(−u) du  one of definition of  Γ(x)=∫_0 ^(+∞) t^(x−1) e^(−t) dt  =Σ_(k≥0) ((Γ(4))/((1+k)^4 ))=Σ_(k≥0) (6/((1+k)^4 ))=Σ_(n≥1) (6/n^4 )=6ζ(4)=6.(π^4 /(90))=(π^4 /(15))  ∫_0 ^(+∞) (x^3 /(e^x −1))dx=(π^4 /(15))  mor generaly if a>0  ∫_0 ^(+∞) (x^a /(e^x −1))dx=Γ(a+1).ζ(a+1)

$$=\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{x}^{\mathrm{3}} \mathrm{e}^{−\mathrm{x}} }{\mathrm{1}−\mathrm{e}^{−\mathrm{x}} }\mathrm{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−\mathrm{e}^{−\mathrm{x}} }=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\mathrm{e}^{−\mathrm{kx}} \\ $$$$\Rightarrow=\int_{\mathrm{0}} ^{+\infty} \mathrm{x}^{\mathrm{3}} \mathrm{e}^{−\mathrm{x}} \underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\mathrm{e}^{−\mathrm{kx}} \mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{+\infty} \mathrm{x}^{\mathrm{3}} \underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\mathrm{e}^{−\left(\mathrm{1}+\mathrm{k}\right)\mathrm{x}} \\ $$$$=\Sigma\int_{\mathrm{0}} ^{+\infty} \mathrm{x}^{\mathrm{3}} \mathrm{e}^{−\left(\mathrm{1}+\mathrm{k}\right)\mathrm{x}} \mathrm{dx} \\ $$$$\mathrm{u}=\left(\mathrm{1}+\mathrm{k}\right)\mathrm{x}\Rightarrow\mathrm{dx}=\frac{\mathrm{du}}{\mathrm{1}+\mathrm{k}} \\ $$$$=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{u}^{\mathrm{3}} }{\left(\mathrm{1}+\mathrm{k}\right)^{\mathrm{4}} }\mathrm{e}^{−\mathrm{u}} \mathrm{du} \\ $$$$\mathrm{one}\:\mathrm{of}\:\mathrm{definition}\:\mathrm{of}\:\:\Gamma\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{+\infty} \mathrm{t}^{\mathrm{x}−\mathrm{1}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt} \\ $$$$=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\frac{\Gamma\left(\mathrm{4}\right)}{\left(\mathrm{1}+\mathrm{k}\right)^{\mathrm{4}} }=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{6}}{\left(\mathrm{1}+\mathrm{k}\right)^{\mathrm{4}} }=\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{6}}{\mathrm{n}^{\mathrm{4}} }=\mathrm{6}\zeta\left(\mathrm{4}\right)=\mathrm{6}.\frac{\pi^{\mathrm{4}} }{\mathrm{90}}=\frac{\pi^{\mathrm{4}} }{\mathrm{15}} \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{e}^{\mathrm{x}} −\mathrm{1}}\mathrm{dx}=\frac{\pi^{\mathrm{4}} }{\mathrm{15}} \\ $$$$\mathrm{mor}\:\mathrm{generaly}\:\mathrm{if}\:\mathrm{a}>\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{x}^{\mathrm{a}} }{\mathrm{e}^{\mathrm{x}} −\mathrm{1}}\mathrm{dx}=\Gamma\left(\mathrm{a}+\mathrm{1}\right).\zeta\left(\mathrm{a}+\mathrm{1}\right) \\ $$$$ \\ $$

Commented by TawaTawa last updated on 20/Jan/20

Wow, God bless you sir.

$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by mind is power last updated on 20/Jan/20

thanx sir ,most Welcom

$$\mathrm{thanx}\:\mathrm{sir}\:,\mathrm{most}\:\mathrm{Welcom} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com