Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 78799 by Pratah last updated on 20/Jan/20

Commented by mathmax by abdo last updated on 20/Jan/20

convergence?   let f(x)=((ln(x))/x^(5/4) )   with x≥2  we have  f^′ (x)=(((1/x)x^(5/4) −(5/4)x^((5/4)−1) lnx)/x^(5/2) ) =((x^((5/4)−1) −(5/4)x^((5/4)−1) lnx)/x^(5/2) )  =(x^(1/4) /x^(5/2) )×(1−(5/4)lnx) =((1−(5/4)ln(x))/x^((5/2)−(1/4)) ) =((4−5lnx)/(4 x^(9/4) ))  4−5lnx <0 ⇔4<5lnx ⇒lnx>(4/5) ⇒x >e^(4/5)   so for x>e^(4/5)    f^′ <0 ⇒f is decreazing ⇒Σ_(n=2) ^∞ ((lnn)/n^(5/4) ) and  ∫_2 ^(+∞)  ((lnx)/x^(5/4) )dx  have the same nature of conv. changement  ln(x)=t give ∫_2 ^(+∞)  ((lnx)/x^(5/4) )dx =∫_(ln(2)) ^(+∞)  (t/((e^t )^(5/4) )) e^t  dt  =∫_2 ^(+∞)   t e^(t−(5/4)t)  dt  =∫_2 ^(+∞)  t  e^(−(t/4))  dt  and this integral is convergengent  ⇒this serie is convergent.

$${convergence}?\:\:\:{let}\:{f}\left({x}\right)=\frac{{ln}\left({x}\right)}{{x}^{\frac{\mathrm{5}}{\mathrm{4}}} }\:\:\:{with}\:{x}\geqslant\mathrm{2}\:\:{we}\:{have} \\ $$$${f}^{'} \left({x}\right)=\frac{\frac{\mathrm{1}}{{x}}{x}^{\frac{\mathrm{5}}{\mathrm{4}}} −\frac{\mathrm{5}}{\mathrm{4}}{x}^{\frac{\mathrm{5}}{\mathrm{4}}−\mathrm{1}} {lnx}}{{x}^{\frac{\mathrm{5}}{\mathrm{2}}} }\:=\frac{{x}^{\frac{\mathrm{5}}{\mathrm{4}}−\mathrm{1}} −\frac{\mathrm{5}}{\mathrm{4}}{x}^{\frac{\mathrm{5}}{\mathrm{4}}−\mathrm{1}} {lnx}}{{x}^{\frac{\mathrm{5}}{\mathrm{2}}} } \\ $$$$=\frac{{x}^{\frac{\mathrm{1}}{\mathrm{4}}} }{{x}^{\frac{\mathrm{5}}{\mathrm{2}}} }×\left(\mathrm{1}−\frac{\mathrm{5}}{\mathrm{4}}{lnx}\right)\:=\frac{\mathrm{1}−\frac{\mathrm{5}}{\mathrm{4}}{ln}\left({x}\right)}{{x}^{\frac{\mathrm{5}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}} }\:=\frac{\mathrm{4}−\mathrm{5}{lnx}}{\mathrm{4}\:{x}^{\frac{\mathrm{9}}{\mathrm{4}}} } \\ $$$$\mathrm{4}−\mathrm{5}{lnx}\:<\mathrm{0}\:\Leftrightarrow\mathrm{4}<\mathrm{5}{lnx}\:\Rightarrow{lnx}>\frac{\mathrm{4}}{\mathrm{5}}\:\Rightarrow{x}\:>{e}^{\frac{\mathrm{4}}{\mathrm{5}}} \\ $$$${so}\:{for}\:{x}>{e}^{\frac{\mathrm{4}}{\mathrm{5}}} \:\:\:{f}^{'} <\mathrm{0}\:\Rightarrow{f}\:{is}\:{decreazing}\:\Rightarrow\sum_{{n}=\mathrm{2}} ^{\infty} \frac{{lnn}}{{n}^{\frac{\mathrm{5}}{\mathrm{4}}} }\:{and} \\ $$$$\int_{\mathrm{2}} ^{+\infty} \:\frac{{lnx}}{{x}^{\frac{\mathrm{5}}{\mathrm{4}}} }{dx}\:\:{have}\:{the}\:{same}\:{nature}\:{of}\:{conv}.\:{changement} \\ $$$${ln}\left({x}\right)={t}\:{give}\:\int_{\mathrm{2}} ^{+\infty} \:\frac{{lnx}}{{x}^{\frac{\mathrm{5}}{\mathrm{4}}} }{dx}\:=\int_{{ln}\left(\mathrm{2}\right)} ^{+\infty} \:\frac{{t}}{\left({e}^{{t}} \right)^{\frac{\mathrm{5}}{\mathrm{4}}} }\:{e}^{{t}} \:{dt} \\ $$$$=\int_{\mathrm{2}} ^{+\infty} \:\:{t}\:{e}^{{t}−\frac{\mathrm{5}}{\mathrm{4}}{t}} \:{dt}\:\:=\int_{\mathrm{2}} ^{+\infty} \:{t}\:\:{e}^{−\frac{{t}}{\mathrm{4}}} \:{dt}\:\:{and}\:{this}\:{integral}\:{is}\:{convergengent} \\ $$$$\Rightarrow{this}\:{serie}\:{is}\:{convergent}. \\ $$

Commented by mind is power last updated on 20/Jan/20

Nice Sir

$$\mathrm{Nice}\:\mathrm{Sir} \\ $$

Commented by msup trace by abdo last updated on 21/Jan/20

thanks sir.

$${thanks}\:{sir}. \\ $$

Answered by mind is power last updated on 20/Jan/20

Serie Cv you Want too find Sum ?

$$\mathrm{Serie}\:\mathrm{Cv}\:\mathrm{you}\:\mathrm{Want}\:\mathrm{too}\:\mathrm{find}\:\mathrm{Sum}\:? \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com