Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 7883 by 314159 last updated on 23/Sep/16

Let a,b,c be the lengths of the sides of a triangle.  Show that abc≥(a+b−c)(b+c−a)(c+a−b).

$${Let}\:{a},{b},{c}\:{be}\:{the}\:{lengths}\:{of}\:{the}\:{sides}\:{of}\:{a}\:{triangle}. \\ $$$${Show}\:{that}\:{abc}\geqslant\left({a}+{b}−{c}\right)\left({b}+{c}−{a}\right)\left({c}+{a}−{b}\right). \\ $$

Commented by sou1618 last updated on 23/Sep/16

  x=a+b−c>0  y=c+a−b>0    a,b,c :length of triangle  z=b+c−a>0    x+y≥2(√(xy))>0  y+z≥2(√(yz))>0  z+x≥2(√(zx))>0    (x+y)(y+z)(z+x)≥8xyz  (2a)×(2c)×(2b)≥8(a+b−c)(c+a−b)(b+c−a)  abc≥(a+b−c)(b+c−a)(c+a−b) .

$$ \\ $$$${x}={a}+{b}−{c}>\mathrm{0} \\ $$$${y}={c}+{a}−{b}>\mathrm{0}\:\:\:\:{a},{b},{c}\::{length}\:{of}\:{triangle} \\ $$$${z}={b}+{c}−{a}>\mathrm{0} \\ $$$$ \\ $$$${x}+{y}\geqslant\mathrm{2}\sqrt{{xy}}>\mathrm{0} \\ $$$${y}+{z}\geqslant\mathrm{2}\sqrt{{yz}}>\mathrm{0} \\ $$$${z}+{x}\geqslant\mathrm{2}\sqrt{{zx}}>\mathrm{0} \\ $$$$ \\ $$$$\left({x}+{y}\right)\left({y}+{z}\right)\left({z}+{x}\right)\geqslant\mathrm{8}{xyz} \\ $$$$\left(\mathrm{2}{a}\right)×\left(\mathrm{2}{c}\right)×\left(\mathrm{2}{b}\right)\geqslant\mathrm{8}\left({a}+{b}−{c}\right)\left({c}+{a}−{b}\right)\left({b}+{c}−{a}\right) \\ $$$${abc}\geqslant\left({a}+{b}−{c}\right)\left({b}+{c}−{a}\right)\left({c}+{a}−{b}\right)\:. \\ $$

Commented by sou1618 last updated on 23/Sep/16

when...    abc=(a+b−c)(b+c−a)(c+a−b)    ⇔x=y=z    ⇔ { ((a+b−c=b+c−a)),((b+c−a=c+a−b)),((c+a−b=a+b−c)) :}    ⇔a=b=c

$${when}... \\ $$$$\:\:{abc}=\left({a}+{b}−{c}\right)\left({b}+{c}−{a}\right)\left({c}+{a}−{b}\right) \\ $$$$\:\:\Leftrightarrow{x}={y}={z} \\ $$$$\:\:\Leftrightarrow\begin{cases}{{a}+{b}−{c}={b}+{c}−{a}}\\{{b}+{c}−{a}={c}+{a}−{b}}\\{{c}+{a}−{b}={a}+{b}−{c}}\end{cases} \\ $$$$\:\:\Leftrightarrow{a}={b}={c} \\ $$

Commented by Rasheed Soomro last updated on 23/Sep/16

Nice!

$$\mathcal{N}{ice}! \\ $$

Answered by prakash jain last updated on 02/Oct/16

see comments

$$\mathrm{see}\:\mathrm{comments} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com