Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 7887 by tawakalitu last updated on 23/Sep/16

Find the first four terms of the power series   expansion of     ((sinx)/(1 − x))

$${Find}\:{the}\:{first}\:{four}\:{terms}\:{of}\:{the}\:{power}\:{series}\: \\ $$$${expansion}\:{of}\:\:\:\:\:\frac{{sinx}}{\mathrm{1}\:−\:{x}}\:\:\: \\ $$

Answered by sandy_suhendra last updated on 23/Sep/16

from the power series :  sin x = Σ_(n=0) ^∞ (−1)^n  (x^(2n+1) /((2n+1)!))              = x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!))  (the first four term)  (1/(1−x)) = Σ_(n=0) ^∞  x^n              = 1+x+x^2 +x^3  (the first four term)  so     ((sin x)/(1−x)) = 1(x)+x(−(x^3 /(3!)))+x^2 ((x^5 /(5!)))+x^3 (−(x^7 /(7!)))                         = x − (x^4 /(3!)) + (x^7 /(5!)) − (x^(10) /(7!))

$${from}\:{the}\:{power}\:{series}\:: \\ $$$${sin}\:{x}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}\:\:\left({the}\:{first}\:{four}\:{term}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{x}}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:{x}^{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \:\left({the}\:{first}\:{four}\:{term}\right) \\ $$$${so}\:\:\:\:\:\frac{{sin}\:{x}}{\mathrm{1}−{x}}\:=\:\mathrm{1}\left({x}\right)+{x}\left(−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\right)+{x}^{\mathrm{2}} \left(\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}\right)+{x}^{\mathrm{3}} \left(−\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{x}\:−\:\frac{{x}^{\mathrm{4}} }{\mathrm{3}!}\:+\:\frac{{x}^{\mathrm{7}} }{\mathrm{5}!}\:−\:\frac{{x}^{\mathrm{10}} }{\mathrm{7}!} \\ $$

Commented by tawakalitu last updated on 23/Sep/16

Thank you so much.

$${Thank}\:{you}\:{so}\:{much}. \\ $$

Commented by Rasheed Soomro last updated on 24/Sep/16

(x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!)))(1+x+x^2 +x^3 )=x − (x^4 /(3!)) + (x^7 /(5!)) − (x^(10) /(7!))???

$$\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}\right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \right)={x}\:−\:\frac{{x}^{\mathrm{4}} }{\mathrm{3}!}\:+\:\frac{{x}^{\mathrm{7}} }{\mathrm{5}!}\:−\:\frac{{x}^{\mathrm{10}} }{\mathrm{7}!}??? \\ $$

Commented by prakash jain last updated on 24/Sep/16

(x−(x^3 /6)+...)(1+x+x^2 +x^3 +..)  =x+x^2 +x^3 +x^4 −(x^3 /6)−(x^4 /6) +(higher order)  =x+x^2 −((5x^3 )/6)−((5x^4 )/6)

$$\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+...\right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +..\right) \\ $$$$={x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} −\frac{{x}^{\mathrm{3}} }{\mathrm{6}}−\frac{{x}^{\mathrm{4}} }{\mathrm{6}}\:+\left(\mathrm{higher}\:\mathrm{order}\right) \\ $$$$={x}+{x}^{\mathrm{2}} −\frac{\mathrm{5}{x}^{\mathrm{3}} }{\mathrm{6}}−\frac{\mathrm{5}{x}^{\mathrm{4}} }{\mathrm{6}} \\ $$

Commented by sandy_suhendra last updated on 28/Sep/16

I thought  ((sin x)/(1−x)) = sinx((1/(1−x)))  =Σ_(n=0) ^∞ (−1)^n  (x^(2n+1) /((2n+1)!)) [Σ_(n=0) ^∞  x^n ]  =Σ_(n=0) ^∞ (−1)^n  (x^(2n+1) /((2n+1)!))  x^n   but I′m wrong, thank′s for your correction

$${I}\:{thought} \\ $$$$\frac{{sin}\:{x}}{\mathrm{1}−{x}}\:=\:{sinx}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right) \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:\left[\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:{x}^{{n}} \right] \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:\:{x}^{{n}} \\ $$$${but}\:{I}'{m}\:{wrong},\:{thank}'{s}\:{for}\:{your}\:{correction} \\ $$

Commented by sandy_suhendra last updated on 28/Sep/16

thank′s for your correction

$${thank}'{s}\:{for}\:{your}\:{correction} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com