Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 78878 by M±th+et£s last updated on 21/Jan/20

x^3  y′′′ − 3x^2 y′′+6xy′ −6y=x^4  ln(x),x>0

$${x}^{\mathrm{3}} \:{y}'''\:−\:\mathrm{3}{x}^{\mathrm{2}} {y}''+\mathrm{6}{xy}'\:−\mathrm{6}{y}={x}^{\mathrm{4}} \:{ln}\left({x}\right),{x}>\mathrm{0} \\ $$

Answered by mind is power last updated on 21/Jan/20

y=x^a  Solution of homgenius⇒  x^3 y′′′−3x^2 y′′+6xy′−6y  (a(a−1)(a−2)−3a(a−1)+6a−6)y(x)=0  ⇒  (a−1)(a(a−2)−3a+6)=0  (a−1)(a^2 −5a+6)=0  ⇒(a−1)(a−3)(a−2)  ⇒a∈{1,2,3}  y_1 =x,y_2 =x^2 ,y_3 =x^3  ,y_1 ,y_2 ,y_3 3 independent Solution ⇒  Y=ay_1 +by_2 +cy_3   Solution of Homgenius Equation  let y=g(x)x particular Solution  y′=xg′+g  y′′=2g′+xg′′  y′′′=3g′′+xg′′′  ⇒x^3 (3g′′+xg′′′)−3x^2 (2g′+xg′′)+6x(xg′+g)−6xg(x)=x^4 ln(x)  ⇒x^4 g′′′=x^4 ln(x)⇒g′′′(x)=ln(x)  ⇒g′′=xln(x)−x  g′(x)=((x^2 ln(x))/2)−(x^2 /4)−(x^2 /2)=((x^2 ln(x))/2)−((3x^2 )/4)  g(x)=((x^3 ln(x))/6)−(x^3 /(18))−(x^3 /4)=((x^3 ln(x))/6)−((11x^3 )/(36))  y(x)=ax+bx^2 +cx^3 +(x^4 /6)(ln(x)−((11)/6))

$${y}={x}^{{a}} \:{Solution}\:{of}\:{homgenius}\Rightarrow \\ $$ $${x}^{\mathrm{3}} {y}'''−\mathrm{3}{x}^{\mathrm{2}} {y}''+\mathrm{6}{xy}'−\mathrm{6}{y} \\ $$ $$\left({a}\left({a}−\mathrm{1}\right)\left({a}−\mathrm{2}\right)−\mathrm{3}{a}\left({a}−\mathrm{1}\right)+\mathrm{6}{a}−\mathrm{6}\right){y}\left({x}\right)=\mathrm{0} \\ $$ $$\Rightarrow \\ $$ $$\left({a}−\mathrm{1}\right)\left({a}\left({a}−\mathrm{2}\right)−\mathrm{3}{a}+\mathrm{6}\right)=\mathrm{0} \\ $$ $$\left({a}−\mathrm{1}\right)\left({a}^{\mathrm{2}} −\mathrm{5}{a}+\mathrm{6}\right)=\mathrm{0} \\ $$ $$\Rightarrow\left({a}−\mathrm{1}\right)\left({a}−\mathrm{3}\right)\left({a}−\mathrm{2}\right) \\ $$ $$\Rightarrow{a}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3}\right\} \\ $$ $${y}_{\mathrm{1}} ={x},{y}_{\mathrm{2}} ={x}^{\mathrm{2}} ,{y}_{\mathrm{3}} ={x}^{\mathrm{3}} \:,{y}_{\mathrm{1}} ,{y}_{\mathrm{2}} ,{y}_{\mathrm{3}} \mathrm{3}\:{independent}\:{Solution}\:\Rightarrow \\ $$ $${Y}={ay}_{\mathrm{1}} +{by}_{\mathrm{2}} +{cy}_{\mathrm{3}} \:\:{Solution}\:{of}\:{Homgenius}\:{Equation} \\ $$ $${let}\:{y}={g}\left({x}\right){x}\:{particular}\:{Solution} \\ $$ $${y}'={xg}'+{g} \\ $$ $${y}''=\mathrm{2}{g}'+{xg}'' \\ $$ $${y}'''=\mathrm{3}{g}''+{xg}''' \\ $$ $$\Rightarrow{x}^{\mathrm{3}} \left(\mathrm{3}{g}''+{xg}'''\right)−\mathrm{3}{x}^{\mathrm{2}} \left(\mathrm{2}{g}'+{xg}''\right)+\mathrm{6}{x}\left({xg}'+{g}\right)−\mathrm{6}{xg}\left({x}\right)={x}^{\mathrm{4}} {ln}\left({x}\right) \\ $$ $$\Rightarrow{x}^{\mathrm{4}} {g}'''={x}^{\mathrm{4}} {ln}\left({x}\right)\Rightarrow{g}'''\left({x}\right)={ln}\left({x}\right) \\ $$ $$\Rightarrow{g}''={xln}\left({x}\right)−{x} \\ $$ $${g}'\left({x}\right)=\frac{{x}^{\mathrm{2}} {ln}\left({x}\right)}{\mathrm{2}}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}=\frac{{x}^{\mathrm{2}} {ln}\left({x}\right)}{\mathrm{2}}−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{4}} \\ $$ $${g}\left({x}\right)=\frac{{x}^{\mathrm{3}} {ln}\left({x}\right)}{\mathrm{6}}−\frac{{x}^{\mathrm{3}} }{\mathrm{18}}−\frac{{x}^{\mathrm{3}} }{\mathrm{4}}=\frac{{x}^{\mathrm{3}} {ln}\left({x}\right)}{\mathrm{6}}−\frac{\mathrm{11}{x}^{\mathrm{3}} }{\mathrm{36}} \\ $$ $${y}\left({x}\right)={ax}+{bx}^{\mathrm{2}} +{cx}^{\mathrm{3}} +\frac{{x}^{\mathrm{4}} }{\mathrm{6}}\left({ln}\left({x}\right)−\frac{\mathrm{11}}{\mathrm{6}}\right) \\ $$ $$ \\ $$

Commented byM±th+et£s last updated on 21/Jan/20

god bless you sir

$${god}\:{bless}\:{you}\:{sir} \\ $$ $$ \\ $$

Commented bymind is power last updated on 21/Jan/20

Thanx you To sir

$${Thanx}\:{you}\:{To}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com