Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 79062 by mr W last updated on 22/Jan/20

if a is a rational number with ∣a∣≤1,  prove that cos (n cos^(−1) (a)) is also a  rational number. (n∈N)

$${if}\:{a}\:{is}\:{a}\:{rational}\:{number}\:{with}\:\mid{a}\mid\leqslant\mathrm{1}, \\ $$$${prove}\:{that}\:\mathrm{cos}\:\left({n}\:\mathrm{cos}^{−\mathrm{1}} \left({a}\right)\right)\:{is}\:{also}\:{a} \\ $$$${rational}\:{number}.\:\left({n}\in\mathbb{N}\right) \\ $$

Answered by mind is power last updated on 22/Jan/20

let U_n =cos(ncos^− (a))  U_0 =1∈Q  U_1 =cos(cos^− (a))=a∈Q  suppose ,∀n≥1  U_n ,U_(n−1) ∈Q,lets Show U_(n+1) ∈Q  we Will use Fort recursion   U_(n+1) +U_(n−1) =cos((n+1)cos^− (a))+cos((n−1)cos^− (a))  =cos(ncos^− (a)+cos^− (a))+cos(ncos^− (a)−cos^− (a))  =2acos(ncos^− (a))=2aU_n   ⇒U_(n+1) =2aU_n −U_(n−1)    since U_n ,U_(n−1) ,a∈Q  ⇒U_(n+1) =2aU_n −U_(n−1) ∈Q

$${let}\:{U}_{{n}} ={cos}\left({ncos}^{−} \left({a}\right)\right) \\ $$$${U}_{\mathrm{0}} =\mathrm{1}\in\mathbb{Q} \\ $$$${U}_{\mathrm{1}} ={cos}\left({cos}^{−} \left({a}\right)\right)={a}\in\mathbb{Q} \\ $$$${suppose}\:,\forall{n}\geqslant\mathrm{1}\:\:{U}_{{n}} ,{U}_{{n}−\mathrm{1}} \in\mathbb{Q},{lets}\:{Show}\:{U}_{{n}+\mathrm{1}} \in\mathbb{Q} \\ $$$${we}\:{Will}\:{use}\:{Fort}\:{recursion}\: \\ $$$${U}_{{n}+\mathrm{1}} +{U}_{{n}−\mathrm{1}} ={cos}\left(\left({n}+\mathrm{1}\right){cos}^{−} \left({a}\right)\right)+{cos}\left(\left({n}−\mathrm{1}\right){cos}^{−} \left({a}\right)\right) \\ $$$$={cos}\left({ncos}^{−} \left({a}\right)+{cos}^{−} \left({a}\right)\right)+{cos}\left({ncos}^{−} \left({a}\right)−{cos}^{−} \left({a}\right)\right) \\ $$$$=\mathrm{2}{acos}\left({ncos}^{−} \left({a}\right)\right)=\mathrm{2}{aU}_{{n}} \\ $$$$\Rightarrow{U}_{{n}+\mathrm{1}} =\mathrm{2}{aU}_{{n}} −{U}_{{n}−\mathrm{1}} \\ $$$$\:{since}\:{U}_{{n}} ,{U}_{{n}−\mathrm{1}} ,{a}\in\mathbb{Q} \\ $$$$\Rightarrow{U}_{{n}+\mathrm{1}} =\mathrm{2}{aU}_{{n}} −{U}_{{n}−\mathrm{1}} \in\mathbb{Q} \\ $$

Commented by mr W last updated on 22/Jan/20

thank you sir! very clear!

$${thank}\:{you}\:{sir}!\:{very}\:{clear}! \\ $$

Commented by mind is power last updated on 22/Jan/20

Withe pleasur Sir

$${Withe}\:{pleasur}\:{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com