Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 79103 by mathmax by abdo last updated on 22/Jan/20

calculate lim_(x→1)   ((nx^(n+1) −(n+1)x^n  +1)/((x−1)^2 ))  without hospital rule.

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\frac{{nx}^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right){x}^{{n}} \:+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:\:{without}\:{hospital}\:{rule}. \\ $$

Commented by mathmax by abdo last updated on 24/Jan/20

let f(x)=((nx^(n+1) −(n+1)x^n  +1)/((x−1)^2 )) changement x−1=t give  f(x)=g(t) =((n(1+t)^(n+1) −(n+1)(1+t)^n  +1)/t^2 )  x→1 ⇒ t→0    we know  (1+t)^α  ∼1+αt +((α(α−1))/2)t^2  ⇒  (1+t)^(n+1)  ∼1+(n+1)t +(((n+1)n)/2)t^2  and  (1+t)^n  ∼1+nt +((n(n−1))/2)t^2  ⇒  g(t)∼((n +n(n+1)t +((n^2 (n+1))/2)t^2 −(n+1)−n(n+1)t−((n(n−1)(n+1))/2)t^2  +1)/t^2 )  ⇒g(t)∼(({((n^2 (n+1))/2)−((n(n−1)(n+1))/2)}t^2 )/t^2 ) ⇒  g(t) ∼((n(n+1))/2)(n−n+1) ⇒lim_(t→0)   g(t)=((n(n+1))/2) ⇒  lim_(x→1) f(x)=((n(n+1))/2)

$${let}\:{f}\left({x}\right)=\frac{{nx}^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right){x}^{{n}} \:+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:{changement}\:{x}−\mathrm{1}={t}\:{give} \\ $$$${f}\left({x}\right)={g}\left({t}\right)\:=\frac{{n}\left(\mathrm{1}+{t}\right)^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right)\left(\mathrm{1}+{t}\right)^{{n}} \:+\mathrm{1}}{{t}^{\mathrm{2}} } \\ $$$${x}\rightarrow\mathrm{1}\:\Rightarrow\:{t}\rightarrow\mathrm{0}\:\:\:\:{we}\:{know}\:\:\left(\mathrm{1}+{t}\right)^{\alpha} \:\sim\mathrm{1}+\alpha{t}\:+\frac{\alpha\left(\alpha−\mathrm{1}\right)}{\mathrm{2}}{t}^{\mathrm{2}} \:\Rightarrow \\ $$$$\left(\mathrm{1}+{t}\right)^{{n}+\mathrm{1}} \:\sim\mathrm{1}+\left({n}+\mathrm{1}\right){t}\:+\frac{\left({n}+\mathrm{1}\right){n}}{\mathrm{2}}{t}^{\mathrm{2}} \:{and} \\ $$$$\left(\mathrm{1}+{t}\right)^{{n}} \:\sim\mathrm{1}+{nt}\:+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}{t}^{\mathrm{2}} \:\Rightarrow \\ $$$${g}\left({t}\right)\sim\frac{{n}\:+{n}\left({n}+\mathrm{1}\right){t}\:+\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)}{\mathrm{2}}{t}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)−{n}\left({n}+\mathrm{1}\right){t}−\frac{{n}\left({n}−\mathrm{1}\right)\left({n}+\mathrm{1}\right)}{\mathrm{2}}{t}^{\mathrm{2}} \:+\mathrm{1}}{{t}^{\mathrm{2}} } \\ $$$$\Rightarrow{g}\left({t}\right)\sim\frac{\left\{\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)}{\mathrm{2}}−\frac{{n}\left({n}−\mathrm{1}\right)\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right\}{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} }\:\Rightarrow \\ $$$${g}\left({t}\right)\:\sim\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\left({n}−{n}+\mathrm{1}\right)\:\Rightarrow{lim}_{{t}\rightarrow\mathrm{0}} \:\:{g}\left({t}\right)=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} {f}\left({x}\right)=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com