Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 79108 by mathmax by abdo last updated on 22/Jan/20

decompose F(x)=((nx^n )/(x^(2n)  +1))  inside C(x) and R(x)  (n≥2)  and determine ∫_0 ^(+∞) F(x)dx

decomposeF(x)=nxnx2n+1insideC(x)andR(x)(n2)anddetermine0+F(x)dx

Commented by mathmax by abdo last updated on 31/Jan/20

another way for ∫_0 ^∞  F(x)dx  we do the changement x^(2n) =t ⇒  x=t^(1/(2n))  ⇒ ∫_0 ^∞  n(x^n /(x^(2n) +1))dx =n∫_0 ^∞    (t^(1/2) /(t+1))×(1/(2n))t^((1/(2n))−1)  dt  =(1/2)∫_0 ^∞   (t^((1/(2n))+(1/2)−1) /(t+1))dt  =(1/2) ×(π/(sin(π((1/(2n))+(1/2))))) =(π/(2sin((π/(2n))+(π/2))))  =(π/(2cos((π/(2n)))))   { ∫_0 ^∞  (t^(a−1) /(1+t))dt =(π/(sin(πa)))=Γ(a)Γ(1−a))  with 0<a<1)}

anotherwayfor0F(x)dxwedothechangementx2n=tx=t12n0nxnx2n+1dx=n0t12t+1×12nt12n1dt=120t12n+121t+1dt=12×πsin(π(12n+12))=π2sin(π2n+π2)=π2cos(π2n){0ta11+tdt=πsin(πa)=Γ(a)Γ(1a))with0<a<1)}

Answered by mind is power last updated on 22/Jan/20

over C(x)  x^(2n) +1=0⇒x^(2n) =−1=e^(iπ+2kπ)   x_k =e^(((i(1+2k)π)/(2n))  ) ,k∈[0,2n−1]  x_(2n−k−1) =e^(i(((1+2(2n−k−1))/(2n)))π) =e^(−i(((1+2k)/(2n)))π)   ⇒x_k =x_(2n−1−k) ^− ,E  ((nx^n )/(x^(2n) +1))=Σ(a_k /(x−x_k ))  a_k =((nx_k )/(2nx_k ^(2n−1) ))=(1/(2x_k ^(2n−2) ))=−(x_k ^2 /2)  ((nx^n )/(x^(2n) +1))=−(1/2)Σ_(k=0) ^(2n−1) (x_k ^2 /((x−x_k )))  over R(X)  −(1/2)Σ_(k=0) ^(2n−1) (x_k ^2 /((x−x_k )))=−(1/2).{Σ_(k=0) ^(n−1) (x_k ^2 /(x−x_k ))+Σ_(k=n) ^(2n−1)  (x_k ^2 /(x−x_k ))}  =−(1/2){Σ_(k=0) ^(n−1) [(x_k ^2 /(x−x_k ))+(x_(2n−1−k) ^2 /(x−x_(2n−1−k) ))]}ByE⇒  =−(1/2){Σ_(k=0) ^(n−1) [(x_k ^2 /(x−x_k ))+(x_k ^(−2) /(x−x_k ^− ))]}  =−(1/2)Σ_(k=0) ^(n−1) [((x(x_k ^2 +x_k ^(−2) )−x_k ^− x_k ^2 −x_k x_k ^(−2) )/(x^2 −2Re(x_k )x+∣x_k ∣^2 ))  =−(1/2)Σ_(k=0) ^(n−1) ((2x(Re(x_k ^2 ))−2Re(x_k ))/(x^2 −2Re(x_k )+1))  =−(1/2)Σ_(k=0) ^(n−1) ((2x(cos(((1+2k)/n)π))−2cos(((1+2k)/(2n))π))/(x^2 −2cos(((1+2k)/(2n))π)+1))  over IR(x)  ∫_0 ^(+∞) n(x^n /(x^(2n) +1))dx  x=tg^(1/n) (t)⇒dx=(1/n)(1+tg^2 (t))tg^((1/n)−1) (t)dt  =∫_0 ^(π/2) tg(t)(((1+tg^2 (t))tg^((1/n)−1)  )/(1+tg^2 (t)))dt  =∫_0 ^(π/2) tg^(1/n) (t)dt=∫_0 ^(π/2) sin^(1/n) (t)cos^(−(1/n)) (t)dt  =(1/2)β(((1+n)/(2n)),((n−1)/(2n)))=(1/2).((Γ(((1+n)/(2n)))Γ(((n−1)/(2n))))/(Γ(((n+1)/(2n))+((n−1)/(2n)))))=((Γ(((n+1)/(2n))).Γ(1−((n+1)/(2n))))/(2Γ(1)))  Γ(x)Γ(1−x)=(π/(sin(πx)))⇒Γ(((n+1)/(2n)))Γ(1−((n+1)/(2n)))=(π/(sin(((n+1)/(2n))π))),Γ(1)=1    =(π/(2sin(((n+1)/(2n))π)))=(π/(2cos((π/(2n)))))

overC(x)x2n+1=0x2n=1=eiπ+2kπxk=ei(1+2k)π2n,k[0,2n1]x2nk1=ei(1+2(2nk1)2n)π=ei(1+2k2n)πxk=x2n1k,Enxnx2n+1=Σakxxkak=nxk2nxk2n1=12xk2n2=xk22nxnx2n+1=122n1k=0xk2(xxk)overR(X)122n1k=0xk2(xxk)=12.{n1k=0xk2xxk+2n1k=nxk2xxk}=12{n1k=0[xk2xxk+x2n1k2xx2n1k]}ByE=12{n1k=0[xk2xxk+x2kxxk]}=12n1k=0[x(xk2+x2k)xkxk2xkx2kx22Re(xk)x+xk2=12n1k=02x(Re(xk2))2Re(xk)x22Re(xk)+1=12n1k=02x(cos(1+2knπ))2cos(1+2k2nπ)x22cos(1+2k2nπ)+1overIR(x)0+nxnx2n+1dxx=tg1n(t)dx=1n(1+tg2(t))tg1n1(t)dt=0π2tg(t)(1+tg2(t))tg1n11+tg2(t)dt=0π2tg1n(t)dt=0π2sin1n(t)cos1n(t)dt=12β(1+n2n,n12n)=12.Γ(1+n2n)Γ(n12n)Γ(n+12n+n12n)=Γ(n+12n).Γ(1n+12n)2Γ(1)Γ(x)Γ(1x)=πsin(πx)Γ(n+12n)Γ(1n+12n)=πsin(n+12nπ),Γ(1)=1=π2sin(n+12nπ)=π2cos(π2n)

Commented by mathmax by abdo last updated on 23/Jan/20

thank you sir.

thankyousir.

Commented by mind is power last updated on 23/Jan/20

y′re Welcom

yreWelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com