Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 79121 by M±th+et£s last updated on 22/Jan/20

Answered by mr W last updated on 23/Jan/20

Commented by mr W last updated on 23/Jan/20

R=radius of semicircle  2a=side length of equilateral triangle  λ=(a/R)  ((sin (π/3))/R)=((sin (π−β−(π/3)))/a)=((cos (β−(π/6)))/a)  cos (β−(π/6))=(((√3)a)/(2R))=(((√3)λ)/2)  ⇒β=cos^(−1) (((√3)λ)/2)+(π/6)  sin β=(1/2)×(((√3)λ)/2)+((√3)/2)×((√(4−3λ^2 ))/2)=(((√3)(λ+(√(4−3λ^2 ))))/4)  α=(π/2)−β=(π/3)−cos^(−1) (((√3)λ)/2)  A=2(((αR^2 )/2)+((Ra sin β)/2))  A=R^2 (α+λ sin β)  area of triangle =(√3)a^2 =(√3)λ^2 R^2 =A+S  ..(i)  area of semicircle =((πR^2 )/2)=A+2S  ..(ii)  2×(i)−(ii):  ⇒2(√3)λ^2 R^2 −((πR^2 )/2)=A=R^2 (α+λ sin β)  ⇒2(√3)λ^2 −(π/2)=α+λ sin β  ⇒2(√3)λ^2 −(π/2)=(π/3)−cos^(−1) (((√3)λ)/2)+((λ(√3)(λ+(√(4−3λ^2 ))))/4)  ⇒7(√3)λ^2 −λ(√(3(4−3λ^2 )))+4 cos^(−1) (((√3)λ)/2)=((10π)/3)  ⇒λ≈0.894034    from (ii):  S=(1/2)(((πR^2 )/2)−A)=((πR^2 )/4)−(A/2)  (S/A)=((πR^2 )/(4×(2(√3)λ^2 R^2 −((πR^2 )/2))))−(1/2)  ⇒(S/A)=(π/(8(√3)λ^2 −2π))−(1/2)≈0.155564

R=radiusofsemicircle2a=sidelengthofequilateraltriangleλ=aRsinπ3R=sin(πβπ3)a=cos(βπ6)acos(βπ6)=3a2R=3λ2β=cos13λ2+π6sinβ=12×3λ2+32×43λ22=3(λ+43λ2)4α=π2β=π3cos13λ2A=2(αR22+Rasinβ2)A=R2(α+λsinβ)areaoftriangle=3a2=3λ2R2=A+S..(i)areaofsemicircle=πR22=A+2S..(ii)2×(i)(ii):23λ2R2πR22=A=R2(α+λsinβ)23λ2π2=α+λsinβ23λ2π2=π3cos13λ2+λ3(λ+43λ2)473λ2λ3(43λ2)+4cos13λ2=10π3λ0.894034from(ii):S=12(πR22A)=πR24A2SA=πR24×(23λ2R2πR22)12SA=π83λ22π120.155564

Commented by mr W last updated on 23/Jan/20

an exact solution is not possible.

anexactsolutionisnotpossible.

Commented by M±th+et£s last updated on 23/Jan/20

god bless you sir . nice job

godblessyousir.nicejob

Commented by M±th+et£s last updated on 23/Jan/20

Commented by M±th+et£s last updated on 23/Jan/20

how can you find sin(B) from B valuep

howcanyoufindsin(B)fromBvaluep

Terms of Service

Privacy Policy

Contact: info@tinkutara.com