Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 79236 by jagoll last updated on 23/Jan/20

lim_(x→+∞)  x{e−(1+(1/x))^x }=?

$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:\mathrm{x}\left\{\mathrm{e}−\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{x}} \right\}=? \\ $$

Commented by mathmax by abdo last updated on 23/Jan/20

let A(x)=x{e−(1+(1/x))^x }  we have (1+(1/x))^x =e^(xln(1+(1/x)))   we have ln^′ (1+u) =(1/(1+u)) =1−u +o(u^2 ) ⇒  ln(1+u) =u−(u^2 /2) +o(u^3 )(u∼o) ⇒ln(1+(1/x))=(1/x)−(1/(2x^2 )) +o((1/x^3 ))(x∼+∞) ⇒  xln(1+(1/x))=1−(1/(2x)) +o((1/x^2 )) ⇒e^(xln(1+(1/x))) =e^(1−(1/(2x))+o((1/x^2 )))   =e(1−(1/(2x)) +o((1/x^2 ))) ⇒e−(1+(1/x))^x =(e/(2x)) +o((1/x^2 )) ⇒  x{e−(1+(1/x))^x } =(e/2) +o((1/x)) ⇒lim_(x→+∞)  A(x)=(e/2)

$${let}\:{A}\left({x}\right)={x}\left\{{e}−\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} \right\}\:\:{we}\:{have}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} ={e}^{{xln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)} \\ $$$${we}\:{have}\:{ln}^{'} \left(\mathrm{1}+{u}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+{u}}\:=\mathrm{1}−{u}\:+{o}\left({u}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{u}\right)\:={u}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+{o}\left({u}^{\mathrm{3}} \right)\left({u}\sim{o}\right)\:\Rightarrow{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)=\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)\left({x}\sim+\infty\right)\:\Rightarrow \\ $$$${xln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{x}}\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:\Rightarrow{e}^{{xln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)} ={e}^{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{x}}+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)} \\ $$$$={e}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{x}}\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\right)\:\Rightarrow{e}−\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} =\frac{{e}}{\mathrm{2}{x}}\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:\Rightarrow \\ $$$${x}\left\{{e}−\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} \right\}\:=\frac{{e}}{\mathrm{2}}\:+{o}\left(\frac{\mathrm{1}}{{x}}\right)\:\Rightarrow{lim}_{{x}\rightarrow+\infty} \:{A}\left({x}\right)=\frac{{e}}{\mathrm{2}} \\ $$

Commented by jagoll last updated on 23/Jan/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mathmax by abdo last updated on 24/Jan/20

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Answered by Smail last updated on 23/Jan/20

x=1/t  lim_(t→0) ((e−(1+t)^(1/t) )/t)=lim_(t→0) ((e−e^((ln(1+t))/t) )/t)  lim_(t→0) ((e−e^((t−(t^2 /2))(1/t)) )/t)=lim_(t→0) ((e−e(1−t/2))/t)=(e/2)

$${x}=\mathrm{1}/{t} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {{lim}}\frac{{e}−\left(\mathrm{1}+{t}\right)^{\mathrm{1}/{t}} }{{t}}=\underset{{t}\rightarrow\mathrm{0}} {{lim}}\frac{{e}−{e}^{\frac{{ln}\left(\mathrm{1}+{t}\right)}{{t}}} }{{t}} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {{lim}}\frac{{e}−{e}^{\left({t}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\right)\frac{\mathrm{1}}{{t}}} }{{t}}=\underset{{t}\rightarrow\mathrm{0}} {{lim}}\frac{{e}−{e}\left(\mathrm{1}−{t}/\mathrm{2}\right)}{{t}}=\frac{{e}}{\mathrm{2}} \\ $$

Commented by jagoll last updated on 23/Jan/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com