Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 79263 by jagoll last updated on 23/Jan/20

4^(2x−1) +(1/4)^2 log^2 (2x)>^2 log(x)  {^2 log((1/x))−2^(2x) }

$$\mathrm{4}^{\mathrm{2x}−\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{4}}\:^{\mathrm{2}} \mathrm{log}^{\mathrm{2}} \left(\mathrm{2x}\right)>\:^{\mathrm{2}} \mathrm{log}\left(\mathrm{x}\right) \\ $$ $$\left\{^{\mathrm{2}} \mathrm{log}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)−\mathrm{2}^{\mathrm{2x}} \right\} \\ $$

Commented byjohn santu last updated on 24/Jan/20

(i) x>0  (ii)(4^(2x) /4)+(1/4){log_2  (2)+log_2 (x)}^2   >log_2 (x){−log_2 (x)−4^x }  let 4^x = u , log_2 (x)= v  (u^2 /4)+(1/4)(1+v)^2 >−4v^2 −4uv  u^2 +4uv+4v^2 +(1+v)^2 >0  (u+2v)^2 +(1+v)^2 >0  ⇒ { ((u+2v=0⇒4^x +2.log_2 (x)=0)),((1+v=0⇒1+log_2 (x)=0)) :}   x =(1/2) ∴ x∈R ∧x=(1/2)

$$\left({i}\right)\:{x}>\mathrm{0} \\ $$ $$\left({ii}\right)\frac{\mathrm{4}^{\mathrm{2}{x}} }{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}\left\{\mathrm{log}_{\mathrm{2}} \:\left(\mathrm{2}\right)+\mathrm{log}_{\mathrm{2}} \left({x}\right)\right\}^{\mathrm{2}} \\ $$ $$>\mathrm{log}_{\mathrm{2}} \left({x}\right)\left\{−\mathrm{log}_{\mathrm{2}} \left({x}\right)−\mathrm{4}^{{x}} \right\} \\ $$ $${let}\:\mathrm{4}^{{x}} =\:{u}\:,\:\mathrm{log}_{\mathrm{2}} \left({x}\right)=\:{v} \\ $$ $$\frac{{u}^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+{v}\right)^{\mathrm{2}} >−\mathrm{4}{v}^{\mathrm{2}} −\mathrm{4}{uv} \\ $$ $${u}^{\mathrm{2}} +\mathrm{4}{uv}+\mathrm{4}{v}^{\mathrm{2}} +\left(\mathrm{1}+{v}\right)^{\mathrm{2}} >\mathrm{0} \\ $$ $$\left({u}+\mathrm{2}{v}\right)^{\mathrm{2}} +\left(\mathrm{1}+{v}\right)^{\mathrm{2}} >\mathrm{0} \\ $$ $$\Rightarrow\begin{cases}{{u}+\mathrm{2}{v}=\mathrm{0}\Rightarrow\mathrm{4}^{{x}} +\mathrm{2}.\mathrm{log}_{\mathrm{2}} \left({x}\right)=\mathrm{0}}\\{\mathrm{1}+{v}=\mathrm{0}\Rightarrow\mathrm{1}+\mathrm{log}_{\mathrm{2}} \left({x}\right)=\mathrm{0}}\end{cases}\: \\ $$ $${x}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\therefore\:{x}\in\mathbb{R}\:\wedge{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented byjohn santu last updated on 24/Jan/20

check for x=(1/2)  4^(2((1/2))−1) +(1/4){log_2 (2.(1/2))}^2 >  log_2 ((1/2)){log_2 (2)−4^(1/2) }  1+(1/4). 0 > (−1).(−1)

$${check}\:{for}\:{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ $$\mathrm{4}^{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{4}}\left\{\mathrm{log}_{\mathrm{2}} \left(\mathrm{2}.\frac{\mathrm{1}}{\mathrm{2}}\right)\right\}^{\mathrm{2}} > \\ $$ $$\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\left\{\mathrm{log}_{\mathrm{2}} \left(\mathrm{2}\right)−\mathrm{4}^{\frac{\mathrm{1}}{\mathrm{2}}} \right\} \\ $$ $$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}.\:\mathrm{0}\:>\:\left(−\mathrm{1}\right).\left(−\mathrm{1}\right) \\ $$

Commented byjohn santu last updated on 24/Jan/20

i think about this typing error.  should 4^(2x−1) +(1/4).log_2 ^2 (2x)≥  log_2 (x){log_2 ((1/x))−2^(2x) }

$${i}\:{think}\:{about}\:{this}\:{typing}\:{error}. \\ $$ $${should}\:\mathrm{4}^{\mathrm{2}{x}−\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{4}}.\mathrm{log}_{\mathrm{2}} ^{\mathrm{2}} \left(\mathrm{2}{x}\right)\geqslant \\ $$ $$\mathrm{log}_{\mathrm{2}} \left({x}\right)\left\{\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{1}}{{x}}\right)−\mathrm{2}^{\mathrm{2}{x}} \right\} \\ $$

Commented byjagoll last updated on 24/Jan/20

thanks

$$\mathrm{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com