Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 79306 by jagoll last updated on 24/Jan/20

  (√(3−x))−(√(x+1))>(1/2)

3xx+1>12

Commented bykaivan.ahmadi last updated on 24/Jan/20

3−x≥0⇒x≤3  x+1≥0⇒x≥−1  ⇒−1≤x≤3    3−x+x−1−2(√((3−x)(x+1)))>(1/4)⇒  −2(√((3−x)(x+1)))>−(7/4)⇒(√((3−x)(x+1)))<(7/8)⇒  (3−x)(x+1)<((49)/(64))⇒3−x^2 +2x+3<((49)/(64))⇒  x^2 −2x−((143)/(64))>0  Δ=4+((143)/(16))=((207)/(64))  x_(1,2) =((2±((√(207))/8))/2)=1±((√(207))/(16))=1±((3(√(23)))/(16))  x∈[−1,1−((3(√(23)))/(16))]∪[1+((3(√(23)))/(16)),3]

3x0x3 x+10x1 1x3 3x+x12(3x)(x+1)>14 2(3x)(x+1)>74(3x)(x+1)<78 (3x)(x+1)<49643x2+2x+3<4964 x22x14364>0 Δ=4+14316=20764 x1,2=2±20782=1±20716=1±32316 x[1,132316][1+32316,3]

Commented bykey of knowledge last updated on 24/Jan/20

ahmadi aziz,for x=3:  (√(3−3))−(√(3+1))=0−2=−2≯(1/2)

ahmadiaziz,forx=3: 333+1=02=212

Commented bykaivan.ahmadi last updated on 24/Jan/20

Hi sir, thank you.  I did err , in line 4  3−x+x+1

Hisir,thankyou. Ididerr,inline4 3x+x+1

Commented bykaivan.ahmadi last updated on 24/Jan/20

aziz delam

azizdelam

Commented byjohn santu last updated on 24/Jan/20

(i) x≤3 ∧x≥−1  (ii) (√(3−x)) −(1/2)>(√(x+1))  squaring   3−x+(1/4)−(√(3−x)) >x+1  (9/4)−2x>(√(3−x)) , x<(9/8)  squaring ⇒((81)/(16))−9x+4x^2 >3−x  4x^2 −8x+((33)/(16))>0  x^2 −2x+((33)/(64))>0  (x−1)^2 −((31)/(64))>0  x<1−((√(31))/8) ∨ x>1+((√(31))/8)  now we get solution  −1≤x≤3 ∧x<(9/8)∧{x<1−((√(31))/8) ∨x>1+((√(31))/8)}  ∴ −1≤x<1−((√(31))/8)

(i)x3x1 (ii)3x12>x+1 squaring 3x+143x>x+1 942x>3x,x<98 squaring81169x+4x2>3x 4x28x+3316>0 x22x+3364>0 (x1)23164>0 x<1318x>1+318 nowwegetsolution 1x3x<98{x<1318x>1+318} 1x<1318

Commented byjohn santu last updated on 24/Jan/20

by cheking   x ∈[−1,1−((√(31))/8)) ⇒ [−1, 0.304)  put x = 0.2 ⇒(√(3−0.2))−(√(1+0.2))  =1.673−1.095 =0.578 . true

bycheking x[1,1318)[1,0.304) putx=0.230.21+0.2 =1.6731.095=0.578.true

Commented byjagoll last updated on 24/Jan/20

thank you

thankyou

Answered by key of knowledge last updated on 24/Jan/20

3−x≥0∧x+1≥0⇒−1≤x≤3 (i)  (√(3−x))>(√(x+1))+(1/2)⇒3−x>(1/4)+x+1+(√(x+1))⇒  (7/4)−2x>(√(x+1))   ((√(x+1))≥0⇒(7/4)−2x≥0⇒x≤(7/8) (ii))  4x^2 −8x+((33)/(16))>0⇒((8+(√(31)))/8)<x∨x<((8−(√(31)))/8)  (iii)  i∩ii∩iii=[−1,((8−(√(31)))/8)]

3x0x+101x3(i) 3x>x+1+123x>14+x+1+x+1 742x>x+1(x+10742x0x78(ii)) 4x28x+3316>08+318<xx<8318(iii) iiiiii=[1,8318]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com