Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79325 by Henri Boucatchou last updated on 24/Jan/20

 Convergence  of :    1)   I=∫_1 ^( ∞) ((e^(−t/5) ∣sin(lnt)∣)/((t−1)^(3/2) ))dt    2)   I=∫_1 ^∞ ((√(lnx))/((x−1)(√x)))dx

Convergenceof:1)I=1et/5sin(lnt)(t1)3/2dt2)I=1lnx(x1)xdx

Commented by mathmax by abdo last updated on 24/Jan/20

1) changement t−1 =x give  I =∫_1 ^(+∞)  ((e^(−(t/5)) ∣sin(lnt)∣)/((t−1)^(3/2) ))dt =∫_0 ^∞   ((e^(−((1+x)/5)) ∣sin(ln(1+x)∣)/x^(3/2) )dx=∫_0 ^∞  ϕ(x)dx  I =∫_0 ^1 (...)dx +∫_1 ^(+∞) (...)dx  at V(0)   ∣sin(ln(1+x)∣∼∣sin(x)∣∼∣x∣  ⇒ ϕ(x) ∼ ((e^(−(1/5)) x)/x^(3/2) ) =(e^(−(1/5)) /x^(1/2) )  and ∫_0 ^1  e^(−(1/5))  x^(−(1/2))  dx converges  at +∞  ∣ϕ(x)∣ ≤(e^(−((1+x)/5)) /x^(3/2) ) ⇒∫_1 ^(+∞) ∣ϕ(x)∣dx ≤∫_1 ^(+∞) x^(−(3/2))  e^(−((1+x)/5))  dx  we have lim x^2  x^(−(3/2))  e^(−((1+x)/5)) =0 ⇒this integral converges ⇒  I converges

1)changementt1=xgiveI=1+et5sin(lnt)(t1)32dt=0e1+x5sin(ln(1+x)x32dx=0φ(x)dxI=01(...)dx+1+(...)dxatV(0)sin(ln(1+x)∣∼∣sin(x)∣∼∣xφ(x)e15xx32=e15x12and01e15x12dxconvergesat+φ(x)e1+x5x321+φ(x)dx1+x32e1+x5dxwehavelimx2x32e1+x5=0thisintegralconvergesIconverges

Commented by mathmax by abdo last updated on 24/Jan/20

2)  I =∫_1 ^(+∞)  ((√(lnx))/((x−1)(√x)))dx  changement (√(lnx))=t give lnx =t^2  ⇒  x =e^t^2     ⇒ I =∫_0 ^∞  (t/((e^t^2  −1)e^(t^2 /2) )) ×2t e^t^2  dt =∫_0 ^∞    ((2t^2  e^(t^2 /2) )/(e^t^2  −1))dt  =_ ∫_0 ^∞   ((2t^2 e^(−t^2 )  e^(t^2 /2) )/(1−e^(−t^2 ) ))dt =∫_0 ^∞   ((2t^2  e^(−(t^2 /2)) )/(1−e^(−t^2 ) ))dt =∫_0 ^1 (...)dt + ∫_1 ^(+∞)  (...)dt  at V(0) e^(−t^2 ) ∼1−t^2  ⇒1−e^(−t^2 ) ∼1−1+t^2 ⇒ ⇒((2t^2  e^(−(t^2 /2)) )/(1−e^(−t^2 ) )) ∼2e^(−(t^2 /2))  →2 (t→0)  ⇒∫_0 ^1  ((2t e^(−(t^2 /2)) )/(1−e^(−t^2 ) ))dt converges  let ξ>0 we have  lim_(t→+∞)   t^(1+ξ)   ×((2t e^(−(t^2 /2)) )/(1−e^(−t^2 ) )) =0 ⇒∫_1 ^(+∞)  ((2t^2  e^(−(t^2 /2)) )/(1−e^(−t^2 ) )) converges  finally I is convergent

2)I=1+lnx(x1)xdxchangementlnx=tgivelnx=t2x=et2I=0t(et21)et22×2tet2dt=02t2et22et21dt=02t2et2et221et2dt=02t2et221et2dt=01(...)dt+1+(...)dtatV(0)et21t21et211+t22t2et221et22et222(t0)012tet221et2dtconvergesletξ>0wehavelimt+t1+ξ×2tet221et2=01+2t2et221et2convergesfinallyIisconvergent

Terms of Service

Privacy Policy

Contact: info@tinkutara.com