All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 79325 by Henri Boucatchou last updated on 24/Jan/20
Convergenceof:1)I=∫1∞e−t/5∣sin(lnt)∣(t−1)3/2dt2)I=∫1∞lnx(x−1)xdx
Commented by mathmax by abdo last updated on 24/Jan/20
1)changementt−1=xgiveI=∫1+∞e−t5∣sin(lnt)∣(t−1)32dt=∫0∞e−1+x5∣sin(ln(1+x)∣x32dx=∫0∞φ(x)dxI=∫01(...)dx+∫1+∞(...)dxatV(0)∣sin(ln(1+x)∣∼∣sin(x)∣∼∣x∣⇒φ(x)∼e−15xx32=e−15x12and∫01e−15x−12dxconvergesat+∞∣φ(x)∣⩽e−1+x5x32⇒∫1+∞∣φ(x)∣dx⩽∫1+∞x−32e−1+x5dxwehavelimx2x−32e−1+x5=0⇒thisintegralconverges⇒Iconverges
2)I=∫1+∞lnx(x−1)xdxchangementlnx=tgivelnx=t2⇒x=et2⇒I=∫0∞t(et2−1)et22×2tet2dt=∫0∞2t2et22et2−1dt=∫0∞2t2e−t2et221−e−t2dt=∫0∞2t2e−t221−e−t2dt=∫01(...)dt+∫1+∞(...)dtatV(0)e−t2∼1−t2⇒1−e−t2∼1−1+t2⇒⇒2t2e−t221−e−t2∼2e−t22→2(t→0)⇒∫012te−t221−e−t2dtconvergesletξ>0wehavelimt→+∞t1+ξ×2te−t221−e−t2=0⇒∫1+∞2t2e−t221−e−t2convergesfinallyIisconvergent
Terms of Service
Privacy Policy
Contact: info@tinkutara.com