Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 79359 by ahmadshahhimat775@gmail.com last updated on 24/Jan/20

Commented by mathmax by abdo last updated on 24/Jan/20

let A_n =(((n!)^(1/n) )/n)  we have n! ∼n^n e^(−n) (√(2πn))( stirling formulae) ⇒  (n!)^(1/n)  ∼n e^(−1) ((√(2πn)))^(1/n)  ⇒ A_n ∼e^(−1) (2πn)^(1/(2n))   we have  (2πn)^(1/(2n))  =e^((1/(2n))ln(2πn))  =e^((1/(2n)){ln(2π)+ln(n)})  =e^(((ln(2π))/(2n))+((ln(n))/(2n)))  →e^0  =1 ⇒  lim_(n→+∞)  A_n =(1/e)

letAn=(n!)1nnwehaven!nnen2πn(stirlingformulae)(n!)1nne1(2πn)1nAne1(2πn)12nwehave(2πn)12n=e12nln(2πn)=e12n{ln(2π)+ln(n)}=eln(2π)2n+ln(n)2ne0=1limn+An=1e

Terms of Service

Privacy Policy

Contact: info@tinkutara.com