Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 79449 by mr W last updated on 25/Jan/20

Commented by mr W last updated on 25/Jan/20

[Repost of an old question from b.e.h.i. sir]  Find the radius of 20th circle.

[Repostofanoldquestionfromb.e.h.i.sir]Findtheradiusof20thcircle.

Commented by MJS last updated on 25/Jan/20

corrected location of circle centers   { ((x=t+(1/t^3 )−(1/t^3 )(√(t^4 +1)))),((y=(2/t)−(1/t)(√(t^4 +1)))) :}

correctedlocationofcirclecenters{x=t+1t31t3t4+1y=2t1tt4+1

Commented by john santu last updated on 25/Jan/20

waw....

waw....

Commented by MJS last updated on 25/Jan/20

sorry I made a mistake, I′ll post a corrected  version soon

sorryImadeamistake,Illpostacorrectedversionsoon

Commented by MJS last updated on 25/Jan/20

Can we exactly find the 2^(nd)  circle at least?  I don′t think we can...

Canweexactlyfindthe2ndcircleatleast?Idontthinkwecan...

Commented by MJS last updated on 25/Jan/20

one possible path, but no exact solution  center of C_n =M_n = (((t_n +(1/t_n ^3 )−(1/t_n ^3 )(√(t_n ^4 +1)))),(((2/t_n )−(1/t_n )(√(t_n ^4 +1)))) )  radius of C_n =r_n =t_n +(1/t_n ^3 )−(1/t_n ^3 )(√(t_n ^4 +1))       [t_1 =1 ⇒ M_1 = (((2−(√2))),((2−(√2))) ) ∧ r_1 =2−(√2)]  ∣C_n C_(n+1) ∣^2 =(r_n +r_(n+1) )^2   starting with n=1  let t_2 =p  (((4−2(√2))/p)−(6/p^2 )+((4−2(√2))/p^3 )−(2/p^6 ))(√(p^4 +1))+2p^2 −(4−2(√2))p−((8−4(√2))/p)+(8/p^2 )−((4−2(√2))/p^3 )+(2/p^6 )+12−8(√2)=+((2/p^2 )+((4−2(√2))/p^3 )+(2/p^6 ))(√(p^4 +1))+p^2 +(4−2(√2))p+(3/p^2 )+((4−2(√2))/p^3 )+(2/p^6 )+6−4]2  ...  p(p−1)^2 (p^7 −2(7−4(√2))p^6 +5(11−8(√2))p^5 −4(5−4(√2))p^4 +(63−40(√2))p^3 −2(23−16(√2))p^3 +(73−48(√2))p−8(2−(√2)))=0  we know p≠0∧p≠1  we′re looking for 0<p<1  (there are several       possible circles, touching C_1  from “wrong       sides”)  ⇒ p≈.631658=t_2   ⇒ r_2 ≈.327488  of course we can go on like this but I guess  if I calculate with an error of ±10^(−14)  at least  t_(14)  will have an error of ±1 ...

onepossiblepath,butnoexactsolutioncenterofCn=Mn=(tn+1tn31tn3tn4+12tn1tntn4+1)radiusofCn=rn=tn+1tn31tn3tn4+1[t1=1M1=(2222)r1=22]CnCn+12=(rn+rn+1)2startingwithn=1lett2=p(422p6p2+422p32p6)p4+1+2p2(422)p842p+8p2422p3+2p6+1282=+(2p2+422p3+2p6)p4+1+p2+(422)p+3p2+422p3+2p6+64]2...p(p1)2(p72(742)p6+5(1182)p54(542)p4+(63402)p32(23162)p3+(73482)p8(22))=0weknowp0p1werelookingfor0<p<1(thereareseveralpossiblecircles,touchingC1fromwrongsides)p.631658=t2r2.327488ofcoursewecangoonlikethisbutIguessifIcalculatewithanerrorof±1014atleastt14willhaveanerrorof±1...

Answered by mr W last updated on 25/Jan/20

Part I  finding the radius of circle 1:  r_1 +(r_1 /(√2))=1  ⇒r_1 =((√2)/(1+(√2)))=2−(√2)

PartIfindingtheradiusofcircle1:r1+r12=1r1=21+2=22

Commented by mr W last updated on 25/Jan/20

Commented by mr W last updated on 25/Jan/20

Part II (just an attempt...)  n−th circle with radius r_n  and center  at A(r_n ,y_A ).  (x−r_n )^2 +(y−y_A )^2 =r_n ^2   it touches the curve y=(1/x) at C(x_C ,(1/x_C ))  (x_C −r_n )^2 +((1/x_C )−y_A )^2 =r_n ^2   tan θ=(((1/x_C )−y_A )/(x_C −r_n ))=−(1/(y′))=x_C ^2   ⇒y_A =(1/x_C )−x_C ^2 (x_C −r_n )  ⇒(x_C −r_n )^2 (1+x_C ^4 )=r_n ^2   ⇒x_C ^5 −2r_n x_C ^4 +r_n ^2 x_C ^3 +x_C −2r_n =0  ...... it′s unsolvable for me upon here

PartII(justanattempt...)nthcirclewithradiusrnandcenteratA(rn,yA).(xrn)2+(yyA)2=rn2ittouchesthecurvey=1xatC(xC,1xC)(xCrn)2+(1xCyA)2=rn2tanθ=1xCyAxCrn=1y=xC2yA=1xCxC2(xCrn)(xCrn)2(1+xC4)=rn2xC52rnxC4+rn2xC3+xC2rn=0......itsunsolvableformeuponhere

Commented by behi83417@gmail.com last updated on 25/Jan/20

wow! thanks for attemping dear masters:  sir:MJS and sir: mrW.

wow!thanksforattempingdearmasters:sir:MJSandsir:mrW.

Commented by behi83417@gmail.com last updated on 25/Jan/20

x_c ^3 .r_n ^2 −2(1+x_c ^4 )r_n +x_c ^5 +x_c =0  r_n =((1+x_c ^4 ±(√((1+x_c ^4 )^2 −x_c ^3 (x_c ^5 +x_c ))))/x_c ^3 )  ⇒r_n = { (((1+x_c ^4 +(√(1+x_c ^4 )))/x_c ^3 )),(((1+x_c ^4 −(√(1+x_c ^4 )))/x_c ^3 )) :}  ⇒^(x_c =x)  (∂r_n /∂x_c )=(((4x^3 +((2x^3 )/(√(1+x^4 ))))x^3 −3x^2 (1+x^4 +(√(1+x^4 ))))/x^6 )=0  ⇒x^2 [4x^4 (√(1+x^4 ))+2x^3 )−3(1+x^4 +(1+x^4 )(√(1+x^4 )))]=0  ⇒ { (,(x=0  [not ok])),(,(4x^4 (√(1+x^4 ))+2x^3 −3−3x^4 −3(√(1+x^4 ))−3x^4 (√(1+x^4 ))=0)) :}  ⇒(√(1+x^4 ))(x^4 −3)=3x^4 −2x^3 +3  ⇒(1+x^4 )(x^8 −6x^4 +9)=9x^8 +4x^6 +9−12x^7 +18x^4 −12x^3   ⇒x^(12) −5x^8 +3x^4 +9=9x^8 −12x^7 +4x^6 +18x^4 −12x^3   ⇒x^(12) −14x^8 +12x^7 −4x^6 −15x^4 +12x^3 =0  ⇒ { ((x^3 =0[not ok])),((x^9 −14x^5 +12x^4 −4x^3 −15x+12=0)) :}  ⇒x=−2.51 ,0.733 ,1.747  ⇒r_n =((1+1.747^4 +(√(1+1.747^4 )))/(1.747^3 ))=2.537(×)  ⇒r_n =((1+.733^4 +(√(1+.733^4 )))/(0.733^3 ))=6.155 (×)  ⇒r_n =((1+(−2.51)^4 +(√(1+(−2.51)^4 )))/((−2.51)^3 ))=−2.97(×)

xc3.rn22(1+xc4)rn+xc5+xc=0rn=1+xc4±(1+xc4)2xc3(xc5+xc)xc3rn={1+xc4+1+xc4xc31+xc41+xc4xc3xc=xrnxc=(4x3+2x31+x4)x33x2(1+x4+1+x4)x6=0x2[4x41+x4+2x3)3(1+x4+(1+x4)1+x4)]=0{x=0[notok]4x41+x4+2x333x431+x43x41+x4=01+x4(x43)=3x42x3+3(1+x4)(x86x4+9)=9x8+4x6+912x7+18x412x3x125x8+3x4+9=9x812x7+4x6+18x412x3x1214x8+12x74x615x4+12x3=0{x3=0[notok]x914x5+12x44x315x+12=0x=2.51,0.733,1.747rn=1+1.7474+1+1.74741.7473=2.537(×)rn=1+.7334+1+.73340.7333=6.155(×)rn=1+(2.51)4+1+(2.51)4(2.51)3=2.97(×)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com