Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 79480 by TawaTawa last updated on 25/Jan/20

Commented by mathmax by abdo last updated on 25/Jan/20

let I =∫_0 ^(π/4)  ((ln(tanx))/(cos(2x)))dx  changement tanx =t give  I =∫_0 ^1  ((ln(t))/((1−t^2 )/(1+t^2 ))) (dt/(1+t^2 )) =∫_0 ^1  ((ln(t))/(1−t^2 ))dt =∫_0 ^1 ln(t)(Σ_(n=0) ^∞  t^(2n) )dt  =Σ_(n=0) ^∞  ∫_0 ^1  t^(2n) ln(t)dt    we have  by parts  ∫_0 ^1  t^(2n) ln(t)dt =[(1/(2n+1))t^(2n+1) ln(t)]_0 ^1  −∫_0 ^1 (t^(2n) /(2n+1))dt  =−(1/((2n+1))) ∫_0 ^1  t^(2n)  dt =−(1/((2n+1)^2 ))[t^(2n+1) ]_0 ^1  =−(1/((2n+1)^2 ))  ⇒ I =−Σ_(n=0) ^∞  (1/((2n+1)^2 )) we have  Σ_(n=1) ^∞  (1/n^2 ) =(1/4)Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒Σ_(n=0) ^∞  (1/((2n+1)^2 ))  =(1−(1/4))Σ_(n=1) ^∞  (1/n^2 ) =(3/4)×(π^2 /6) =(π^2 /8)  ⇒I =−(π^2 /8)  the value is proved.

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{ln}\left({tanx}\right)}{{cos}\left(\mathrm{2}{x}\right)}{dx}\:\:{changement}\:{tanx}\:={t}\:{give} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({t}\right)}{\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({t}\right)}{\mathrm{1}−{t}^{\mathrm{2}} }{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({t}\right)\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{t}^{\mathrm{2}{n}} \right){dt} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} {ln}\left({t}\right){dt}\:\:\:\:{we}\:{have}\:\:{by}\:{parts} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} {ln}\left({t}\right){dt}\:=\left[\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{t}^{\mathrm{2}{n}+\mathrm{1}} {ln}\left({t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}}{dt} \\ $$$$=−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} \:{dt}\:=−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\left[{t}^{\mathrm{2}{n}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:{I}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:{we}\:{have} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{4}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right)\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\frac{\mathrm{3}}{\mathrm{4}}×\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:\:\Rightarrow{I}\:=−\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$${the}\:{value}\:{is}\:{proved}. \\ $$

Commented by TawaTawa last updated on 25/Jan/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by abdomathmax last updated on 25/Jan/20

you  are welcome .

$${you}\:\:{are}\:{welcome}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com