Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 79499 by jagoll last updated on 25/Jan/20

∫_0 ^(30π) ∣sin x∣ dx=

30π0sinxdx=

Commented by john santu last updated on 25/Jan/20

y = ∣sin x∣ is even function and  periodic with periode = π  ∫_0 ^(30π) ∣sin x∣dx = ∫_0 ^π ∣sin x∣dx+∫_π ^(2π) ∣sin x∣dx+  ...+∫_(29π) ^(30) ∣sin x∣dx   = 30×[2∫_0 ^(π/2) sin xdx] = 60×1 = 60.

y=sinxisevenfunctionandperiodicwithperiode=π30π0sinxdx=π0sinxdx+2ππsinxdx+...+3029πsinxdx=30×[2π20sinxdx]=60×1=60.

Commented by mathmax by abdo last updated on 25/Jan/20

∫_0 ^(30π) ∣sinx∣dx =Σ_(k=0) ^(29)   ∫_(kπ) ^((k+1)π) ∣sinx∣dx =_(x=kπ +t)   =Σ_(k=0) ^(29)  ∫_0 ^π ∣sin(kπ +t)dt =Σ_(k=0) ^(29)  ∫_0 ^π ∣sint∣dt  =Σ_(k=0) ^(29)  ∫_0 ^π sint dt =Σ_(k=0) ^(29) [−cost]_0 ^π  =2Σ_(k=0) ^(29) (1) =2×30 =60

030πsinxdx=k=029kπ(k+1)πsinxdx=x=kπ+t=k=0290πsin(kπ+t)dt=k=0290πsintdt=k=0290πsintdt=k=029[cost]0π=2k=029(1)=2×30=60

Terms of Service

Privacy Policy

Contact: info@tinkutara.com