Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 79532 by naka3546 last updated on 26/Jan/20

Given  function  f : R  ⇒  R          x^2  f(x) + f(1 − x)  =  2x − x^4   f(2019)  =  ?

Givenfunctionf:RRx2f(x)+f(1x)=2xx4f(2019)=?

Commented by john santu last updated on 26/Jan/20

(1) x = 2019   (2019)^2 f(2019)+f(−2018)=2×(2019)−(2019)^4   (2) x=−2018   (−2018)^2 f(−2018)+f(2019)=2×(−2018)−(−2018)^4   now you get the result

(1)x=2019(2019)2f(2019)+f(2018)=2×(2019)(2019)4(2)x=2018(2018)2f(2018)+f(2019)=2×(2018)(2018)4nowyougettheresult

Commented by mathmax by abdo last updated on 26/Jan/20

x^2 f(x)+f(1−x)=2x−x^4  let change x by 1−x ⇒  (1−x)f(1−x)+f(x)=2(1−x)−(1−x)^4   so we get the systeme   { ((x^2 f(x)+f(1−x)=2x−x^4 )),((f(x) +(1−x)^2 f(1−x)=2(1−x)−(1−x)^4 )) :}  Δ_s = determinant (((x^2            1)),((1          (1−x)^2 )))=x^2 (1−x)^2 −1 ⇒ f(x)=( determinant (((2x−x^4                                    1)),((2(1−x)−(1−x)^4         ( 1−x)^2 )))/(x^2 −x^3 −1))  =(((2x−x^4 )(1−x)^2 −2(1−x)+(1−x)^4 )/(x^2 (1−x)^2 −1)) ⇒  f(2019) =(((2×2019−(2019)^4 )(2018)^2 +2×(2018)+(2018)^4 )/((2019)^2 ×2018^2 −1))

x2f(x)+f(1x)=2xx4letchangexby1x(1x)f(1x)+f(x)=2(1x)(1x)4sowegetthesysteme{x2f(x)+f(1x)=2xx4f(x)+(1x)2f(1x)=2(1x)(1x)4Δs=|x211(1x)2|=x2(1x)21f(x)=|2xx412(1x)(1x)4(1x)2|x2x31=(2xx4)(1x)22(1x)+(1x)4x2(1x)21f(2019)=(2×2019(2019)4)(2018)2+2×(2018)+(2018)4(2019)2×201821

Answered by mr W last updated on 26/Jan/20

x^2  f(x) + f(1 − x)  =  2x − x^4    ...(i)  let t=1−x ⇒x=1−t  (1−t)^2  f(1−t) + f(t)  =  2(1−t) −(1−t )^4   or  (1−x)^2  f(1−x) + f(x)  =  2(1−x) −(1−x )^4    ...(ii)  (i)×(1−x)^2 −(ii):  [x^2 (1−x)^2 −1]f(x) =  2x(1−x)^2 −2(1−x)+(1−x)^4  − x^4 (1−x)^2   [x^2 (1−x)^2 −1]f(x) =(x−1){2+2(x−1)x+(x−1)^3 −(x−1)x^4 }  ⇒f(x) =(((x−1){2+2(x−1)x+(x−1)^3 −(x−1)x^4 })/(x^2 (1−x)^2 −1))  f(2019) =((2018{2+2×2018×2019+2018^3 −2018×2019^4 })/(2018^2 ×2019^2 −1))  f(2019)=−4076360

x2f(x)+f(1x)=2xx4...(i)lett=1xx=1t(1t)2f(1t)+f(t)=2(1t)(1t)4or(1x)2f(1x)+f(x)=2(1x)(1x)4...(ii)(i)×(1x)2(ii):[x2(1x)21]f(x)=2x(1x)22(1x)+(1x)4x4(1x)2[x2(1x)21]f(x)=(x1){2+2(x1)x+(x1)3(x1)x4}f(x)=(x1){2+2(x1)x+(x1)3(x1)x4}x2(1x)21f(2019)=2018{2+2×2018×2019+201832018×20194}20182×201921f(2019)=4076360

Terms of Service

Privacy Policy

Contact: info@tinkutara.com