Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79627 by mathmax by abdo last updated on 26/Jan/20

1) expicite f(x)=∫_0 ^1  ((ln(1+xt^2 ))/(1+t^2 ))dt with x≥0  2)calculate ∫_0 ^1  ((ln(1+t^2 ))/(1+t^2 ))dt and ∫_0 ^1  ((ln(1+2t^2 ))/(1+t^2 ))dt

1)expicitef(x)=01ln(1+xt2)1+t2dtwithx02)calculate01ln(1+t2)1+t2dtand01ln(1+2t2)1+t2dt

Commented by mathmax by abdo last updated on 30/Jan/20

1) we have f^′ (x)=∫_0 ^1 (t^2 /((1+xt^2 )(t^2  +1)))dt  =∫_0 ^1  ((t^2  +1−1)/((t^2  +1)(xt^2  +1)))dt =∫_0 ^1  (dt/(xt^2  +1))−∫_0 ^1  (dt/((t^2  +1)(xt^2  +1)))  ∫_0 ^1  (dt/(xt^2  +1)) =_(t(√x)=u)   ∫_0 ^(√x)   (du/((√x)(1+u^2 ))) =(1/(√x)) arctan((√x)) and  let decompose F(t)=(1/((t^2  +1)(xt^2  +1)))  F(t)=((at +b)/(t^2  +1)) +((ct +d)/(xt^2  +1))  we have F(−t)=F(t) ⇒  ((−at +b)/(t^2  +1)) +((−ct +d)/(xt^2  +1)) =F(t) ⇒a=c=0 ⇒F(t) =(b/(t^2  +1)) +(d/(xt^2  +1))  lim_(t→+∞) t^2 F(t)=0=b+(d/x) ⇒d+bx =0 ⇒d =−bx  F(0)=1 =b+d ⇒1=b−bx =(1−x)b ⇒b=(1/(1−x)) and d=((−x)/(1−x)) ⇒  F(t)=(1/((1−x)(t^2  +1))) −(x/((1−x)(xt^2  +1)))   (x≠1) ⇒  ∫_0 ^1  F(t)dt =(1/((1−x))) ∫_0 ^1  (dt/(t^2  +1))−(x/(1−x)) ∫_0 ^1  (dt/(xt^2  +1))  =(π/(4(1−x)))−(x/(1−x))×(1/(√x)) arctan((√x)) ⇒  f^′ (x)=(1/(√x)) arctan((√x))−(π/(4(1−x))) +((√x)/(1−x)) arctan((√x))  =((1/(√x)) +((√x)/(1−x)))arctan((√x)) −(π/(4(1−x)))  =(1/((1−x)(√x))) arctan((√x))−(π/(4(1−x))) ⇒  f(x)=∫_0 ^x  ((arctan((√u)))/((1−u)(√u)))du −(π/4)ln(∣1−x∣) +c  c=f(0)=0 ⇒f(x)=∫_0 ^x  ((arctan((√u)))/((1−u)(√u))) du −(π/4)ln∣1−x∣  (√u)=z ⇒∫_0 ^x  ((arctan((√u)))/((1−u)(√u)))du =∫_0 ^(√x)  ((arctan(z))/((1−z^2 )z))(2z)dz  =2∫_0 ^(√x)   ((arctan(z))/(1−z^2 ))dz ⇒f(x)=2 ∫_0 ^(√x)  ((arctan(z))/(1−z^2 ))dz−(π/4)ln∣1−x∣  (x≠1)

1)wehavef(x)=01t2(1+xt2)(t2+1)dt=01t2+11(t2+1)(xt2+1)dt=01dtxt2+101dt(t2+1)(xt2+1)01dtxt2+1=tx=u0xdux(1+u2)=1xarctan(x)andletdecomposeF(t)=1(t2+1)(xt2+1)F(t)=at+bt2+1+ct+dxt2+1wehaveF(t)=F(t)at+bt2+1+ct+dxt2+1=F(t)a=c=0F(t)=bt2+1+dxt2+1limt+t2F(t)=0=b+dxd+bx=0d=bxF(0)=1=b+d1=bbx=(1x)bb=11xandd=x1xF(t)=1(1x)(t2+1)x(1x)(xt2+1)(x1)01F(t)dt=1(1x)01dtt2+1x1x01dtxt2+1=π4(1x)x1x×1xarctan(x)f(x)=1xarctan(x)π4(1x)+x1xarctan(x)=(1x+x1x)arctan(x)π4(1x)=1(1x)xarctan(x)π4(1x)f(x)=0xarctan(u)(1u)uduπ4ln(1x)+cc=f(0)=0f(x)=0xarctan(u)(1u)uduπ4ln1xu=z0xarctan(u)(1u)udu=0xarctan(z)(1z2)z(2z)dz=20xarctan(z)1z2dzf(x)=20xarctan(z)1z2dzπ4ln1x(x1)

Commented by mathmax by abdo last updated on 30/Jan/20

2)let A =∫_0 ^1  ((ln(1+t^2 ))/(1+t^2 ))dt ⇒ A =∫_0 ^1 ((ln(1+it)+ln(1−it))/(1+t^2 ))dt  =∫_0 ^1  ((ln(1+it))/(1+t^2 )) +conj(∫_0 ^1  ((ln(1+it))/(1+t^2 ))dt)=2Re (∫_0 ^1  ((ln(1+it))/(1+t^2 ))dt)  let f(z)=∫_0 ^1  ((ln(1+zt))/(1+t^2 ))dt  we have f^′ (z)=∫_0 ^1   (t/((1+zt)(t^2  +1)))dt  decomposittion of F(t)=(t/((1+zt)(t^2  +1)))  =(a/(zt +1)) +((bt +c)/(t^2  +1))  a =(zt+1)F(t)∣_(t=−(1/z))   =−(1/(z((1/z^2 )+1))) =−(1/(z(((1+z^2 )/z^2 )))) =−(z/(1+z^2 ))  lim_(t→+∞)  t F(t)=0 =(a/z) +b ⇒b=−(a/z) =(1/(1+z^2 ))  F(0)=0 =a +c ⇒c=−a =(z/(1+z^2 )) ⇒  F(t)=−(z/((1+z^2 )(zt +1))) +(1/(1+z^2 ))×((t+z)/(t^2  +1)) ⇒  f^′ (z)=∫_0 ^1  F(t)dt =−(z/(1+z^2 )) ∫_0 ^1   (dt/(zt +1)) +(1/(2(1+z^2 )))∫_0 ^1  ((2t)/(t^2  +1))dt+(z/(1+z^2 ))∫_0 ^1  (dt/(1+t^2 ))  =−(1/(1+z^2 ))ln(z+1)+(1/(2(1+z^2 )))ln(2)+(z/(1+z^2 ))×(π/4) ⇒  f(z) =−∫_0 ^z  ((ln(1+u))/(u^2  +1)) du+((ln(2))/2)∫_0 ^z  (du/(1+u^2 )) +(π/8) ∫_0 ^z  ((2u)/(1+u^2 ))du +c  =((ln(2))/2) arctan(z)+(π/8)ln(1+z^2 )−∫_0 ^z  ((ln(1+u))/(u^2  +1))du (c=f(0)=0)  f(1)=∫_0 ^1 ((ln(1+t))/(1+t^2 ))dt =((ln(2))/2)×(π/4) +(π/8)ln(2)−∫_0 ^1  ((ln(1+u))/(u^2  +1))du ⇒  2 ∫_0 ^1  ((ln(1+u))/(1+u^2 ))du =(π/4)ln(2)  ⇒∫_0 ^1  ((ln(1+u))/(1+u^2 ))du =(π/8)ln(2)  the explicit form of f(x) dont give f(i)..so let try another way  ....be continued...

2)letA=01ln(1+t2)1+t2dtA=01ln(1+it)+ln(1it)1+t2dt=01ln(1+it)1+t2+conj(01ln(1+it)1+t2dt)=2Re(01ln(1+it)1+t2dt)letf(z)=01ln(1+zt)1+t2dtwehavef(z)=01t(1+zt)(t2+1)dtdecomposittionofF(t)=t(1+zt)(t2+1)=azt+1+bt+ct2+1a=(zt+1)F(t)t=1z=1z(1z2+1)=1z(1+z2z2)=z1+z2limt+tF(t)=0=az+bb=az=11+z2F(0)=0=a+cc=a=z1+z2F(t)=z(1+z2)(zt+1)+11+z2×t+zt2+1f(z)=01F(t)dt=z1+z201dtzt+1+12(1+z2)012tt2+1dt+z1+z201dt1+t2=11+z2ln(z+1)+12(1+z2)ln(2)+z1+z2×π4f(z)=0zln(1+u)u2+1du+ln(2)20zdu1+u2+π80z2u1+u2du+c=ln(2)2arctan(z)+π8ln(1+z2)0zln(1+u)u2+1du(c=f(0)=0)f(1)=01ln(1+t)1+t2dt=ln(2)2×π4+π8ln(2)01ln(1+u)u2+1du201ln(1+u)1+u2du=π4ln(2)01ln(1+u)1+u2du=π8ln(2)theexplicitformoff(x)dontgivef(i)..solettryanotherway....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com