All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 79627 by mathmax by abdo last updated on 26/Jan/20
1)expicitef(x)=∫01ln(1+xt2)1+t2dtwithx⩾02)calculate∫01ln(1+t2)1+t2dtand∫01ln(1+2t2)1+t2dt
Commented by mathmax by abdo last updated on 30/Jan/20
1)wehavef′(x)=∫01t2(1+xt2)(t2+1)dt=∫01t2+1−1(t2+1)(xt2+1)dt=∫01dtxt2+1−∫01dt(t2+1)(xt2+1)∫01dtxt2+1=tx=u∫0xdux(1+u2)=1xarctan(x)andletdecomposeF(t)=1(t2+1)(xt2+1)F(t)=at+bt2+1+ct+dxt2+1wehaveF(−t)=F(t)⇒−at+bt2+1+−ct+dxt2+1=F(t)⇒a=c=0⇒F(t)=bt2+1+dxt2+1limt→+∞t2F(t)=0=b+dx⇒d+bx=0⇒d=−bxF(0)=1=b+d⇒1=b−bx=(1−x)b⇒b=11−xandd=−x1−x⇒F(t)=1(1−x)(t2+1)−x(1−x)(xt2+1)(x≠1)⇒∫01F(t)dt=1(1−x)∫01dtt2+1−x1−x∫01dtxt2+1=π4(1−x)−x1−x×1xarctan(x)⇒f′(x)=1xarctan(x)−π4(1−x)+x1−xarctan(x)=(1x+x1−x)arctan(x)−π4(1−x)=1(1−x)xarctan(x)−π4(1−x)⇒f(x)=∫0xarctan(u)(1−u)udu−π4ln(∣1−x∣)+cc=f(0)=0⇒f(x)=∫0xarctan(u)(1−u)udu−π4ln∣1−x∣u=z⇒∫0xarctan(u)(1−u)udu=∫0xarctan(z)(1−z2)z(2z)dz=2∫0xarctan(z)1−z2dz⇒f(x)=2∫0xarctan(z)1−z2dz−π4ln∣1−x∣(x≠1)
2)letA=∫01ln(1+t2)1+t2dt⇒A=∫01ln(1+it)+ln(1−it)1+t2dt=∫01ln(1+it)1+t2+conj(∫01ln(1+it)1+t2dt)=2Re(∫01ln(1+it)1+t2dt)letf(z)=∫01ln(1+zt)1+t2dtwehavef′(z)=∫01t(1+zt)(t2+1)dtdecomposittionofF(t)=t(1+zt)(t2+1)=azt+1+bt+ct2+1a=(zt+1)F(t)∣t=−1z=−1z(1z2+1)=−1z(1+z2z2)=−z1+z2limt→+∞tF(t)=0=az+b⇒b=−az=11+z2F(0)=0=a+c⇒c=−a=z1+z2⇒F(t)=−z(1+z2)(zt+1)+11+z2×t+zt2+1⇒f′(z)=∫01F(t)dt=−z1+z2∫01dtzt+1+12(1+z2)∫012tt2+1dt+z1+z2∫01dt1+t2=−11+z2ln(z+1)+12(1+z2)ln(2)+z1+z2×π4⇒f(z)=−∫0zln(1+u)u2+1du+ln(2)2∫0zdu1+u2+π8∫0z2u1+u2du+c=ln(2)2arctan(z)+π8ln(1+z2)−∫0zln(1+u)u2+1du(c=f(0)=0)f(1)=∫01ln(1+t)1+t2dt=ln(2)2×π4+π8ln(2)−∫01ln(1+u)u2+1du⇒2∫01ln(1+u)1+u2du=π4ln(2)⇒∫01ln(1+u)1+u2du=π8ln(2)theexplicitformoff(x)dontgivef(i)..solettryanotherway....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com