Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79634 by TawaTawa last updated on 26/Jan/20

Commented by mathmax by abdo last updated on 27/Jan/20

Ω =∫_(π/5) ^((3π)/(10))  (x/(sin(2x)))dx  changement x=(π/2)−t givet=(π/2)−x  Ω=∫_((3π)/(10)) ^(π/5)  (((π/2)−t)/(sin(2t)))(−dt) =(π/2)∫_(π/5) ^((3π)/(10))  (dt/(sin(2t))) −Ω ⇒  2Ω =(π/2) ∫_(π/5) ^((3π)/(10))  (dt/(sin(2t)))  changement tant =u give  ∫_(π/5) ^((3π)/(10))  (dt/(sin(2t))) =∫_(tan((π/5))) ^(tan(((3π)/(10))))   (1/((2u)/(1+u^2 )))×(du/(1+u^2 )) =(1/2)[ln∣u∣]_(tan((π/5))) ^(tan(((3π)/(10))))   =(1/2){ln(tan(((3π)/(10)))−ln(tan((π/5)))}  =(1/2){ ln(tan((π/2)−(π/5)))−ln(tan((π/5)))}  =(1/2){ln((1/(tan((π/5)))))−ln(tan((π/5)))}=−ln(tan((π/5))) ⇒  Ω=−(π/4)ln(tan((π/5)))

$$\Omega\:=\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \:\frac{{x}}{{sin}\left(\mathrm{2}{x}\right)}{dx}\:\:{changement}\:{x}=\frac{\pi}{\mathrm{2}}−{t}\:{givet}=\frac{\pi}{\mathrm{2}}−{x} \\ $$$$\Omega=\int_{\frac{\mathrm{3}\pi}{\mathrm{10}}} ^{\frac{\pi}{\mathrm{5}}} \:\frac{\frac{\pi}{\mathrm{2}}−{t}}{{sin}\left(\mathrm{2}{t}\right)}\left(−{dt}\right)\:=\frac{\pi}{\mathrm{2}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \:\frac{{dt}}{{sin}\left(\mathrm{2}{t}\right)}\:−\Omega\:\Rightarrow \\ $$$$\mathrm{2}\Omega\:=\frac{\pi}{\mathrm{2}}\:\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \:\frac{{dt}}{{sin}\left(\mathrm{2}{t}\right)}\:\:{changement}\:{tant}\:={u}\:{give} \\ $$$$\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \:\frac{{dt}}{{sin}\left(\mathrm{2}{t}\right)}\:=\int_{{tan}\left(\frac{\pi}{\mathrm{5}}\right)} ^{{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{10}}\right)} \:\:\frac{\mathrm{1}}{\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}×\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\mid{u}\mid\right]_{{tan}\left(\frac{\pi}{\mathrm{5}}\right)} ^{{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{10}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left({tan}\left(\frac{\mathrm{3}\pi}{\mathrm{10}}\right)−{ln}\left({tan}\left(\frac{\pi}{\mathrm{5}}\right)\right)\right\}\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:{ln}\left({tan}\left(\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{5}}\right)\right)−{ln}\left({tan}\left(\frac{\pi}{\mathrm{5}}\right)\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\frac{\mathrm{1}}{{tan}\left(\frac{\pi}{\mathrm{5}}\right)}\right)−{ln}\left({tan}\left(\frac{\pi}{\mathrm{5}}\right)\right)\right\}=−{ln}\left({tan}\left(\frac{\pi}{\mathrm{5}}\right)\right)\:\Rightarrow \\ $$$$\Omega=−\frac{\pi}{\mathrm{4}}{ln}\left({tan}\left(\frac{\pi}{\mathrm{5}}\right)\right) \\ $$

Commented by TawaTawa last updated on 27/Jan/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mathmax by abdo last updated on 29/Jan/20

you are welcome

$${you}\:{are}\:{welcome} \\ $$

Answered by mind is power last updated on 27/Jan/20

Ω=∫_(π/5) ^((3π)/(10)) (x/(sin(2x)))dx  ∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx⇒  ∫_(π/5) ^((3π)/(10)) (((π/2)−x)/(sin(2((π/2)−x))))dx=∫_(π/5) ^((3π)/(10)) (((π/2)−x)/(sin(π−2x)))dx=−∫_(π/5) ^((3π)/(10)) (x/(sin(2x)))+  (π/2)∫_(π/5) ^((3π)/(10)) (dx/(sin(2x)))⇒  ⇒2∫_(π/5) ^((3π)/(10)) ((xdx)/(sin(2x)))=(π/2)∫_(π/5) ^((3π)/(10)) (dx/(sin(2x)))=(π/4)∫_(π/5) ^((3π)/(10)) (dx/(sin(x)cos(x)))  =(π/4)∫_(π/5) ^((3π)/(10)) ((cos(x))/(sin(x).cos^2 (x)))dx=(π/4)∫_(π/5) ^((3π)/(10)) cot(x).(1+tg^2 (x))dx  =(π/4)∫_(π/5) ^((3π)/(10)) tg((π/2)−x)d(tg(x))  =(π/8)[−tg^2 ((π/2)−x)]_(π/5) ^((3π)/(10)) =−(π/8)(tg^2 ((π/5))−tg^2 (((3π)/(10))))  we can find  exact tg((π/5)),and tg(((3π)/(10)))

$$\Omega=\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{x}}{{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$$$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}=\int_{{a}} ^{{b}} {f}\left({a}+{b}−{x}\right){dx}\Rightarrow \\ $$$$\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{\frac{\pi}{\mathrm{2}}−{x}}{{sin}\left(\mathrm{2}\left(\frac{\pi}{\mathrm{2}}−{x}\right)\right)}{dx}=\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{\frac{\pi}{\mathrm{2}}−{x}}{{sin}\left(\pi−\mathrm{2}{x}\right)}{dx}=−\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{x}}{{sin}\left(\mathrm{2}{x}\right)}+ \\ $$$$\frac{\pi}{\mathrm{2}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{dx}}{{sin}\left(\mathrm{2}{x}\right)}\Rightarrow \\ $$$$\Rightarrow\mathrm{2}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{xdx}}{{sin}\left(\mathrm{2}{x}\right)}=\frac{\pi}{\mathrm{2}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{dx}}{{sin}\left(\mathrm{2}{x}\right)}=\frac{\pi}{\mathrm{4}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{dx}}{{sin}\left({x}\right){cos}\left({x}\right)} \\ $$$$=\frac{\pi}{\mathrm{4}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{cos}\left({x}\right)}{{sin}\left({x}\right).{cos}^{\mathrm{2}} \left({x}\right)}{dx}=\frac{\pi}{\mathrm{4}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} {cot}\left({x}\right).\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({x}\right)\right){dx} \\ $$$$=\frac{\pi}{\mathrm{4}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} {tg}\left(\frac{\pi}{\mathrm{2}}−{x}\right){d}\left({tg}\left({x}\right)\right) \\ $$$$=\frac{\pi}{\mathrm{8}}\left[−{tg}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}}−{x}\right)\right]_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} =−\frac{\pi}{\mathrm{8}}\left({tg}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{5}}\right)−{tg}^{\mathrm{2}} \left(\frac{\mathrm{3}\pi}{\mathrm{10}}\right)\right) \\ $$$${we}\:{can}\:{find}\:\:{exact}\:{tg}\left(\frac{\pi}{\mathrm{5}}\right),{and}\:{tg}\left(\frac{\mathrm{3}\pi}{\mathrm{10}}\right) \\ $$$$ \\ $$

Commented by TawaTawa last updated on 27/Jan/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mind is power last updated on 27/Jan/20

thak you ,withe pleasur

$${thak}\:{you}\:,{withe}\:{pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com