Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79634 by TawaTawa last updated on 26/Jan/20

Commented by mathmax by abdo last updated on 27/Jan/20

Ω =∫_(π/5) ^((3π)/(10))  (x/(sin(2x)))dx  changement x=(π/2)−t givet=(π/2)−x  Ω=∫_((3π)/(10)) ^(π/5)  (((π/2)−t)/(sin(2t)))(−dt) =(π/2)∫_(π/5) ^((3π)/(10))  (dt/(sin(2t))) −Ω ⇒  2Ω =(π/2) ∫_(π/5) ^((3π)/(10))  (dt/(sin(2t)))  changement tant =u give  ∫_(π/5) ^((3π)/(10))  (dt/(sin(2t))) =∫_(tan((π/5))) ^(tan(((3π)/(10))))   (1/((2u)/(1+u^2 )))×(du/(1+u^2 )) =(1/2)[ln∣u∣]_(tan((π/5))) ^(tan(((3π)/(10))))   =(1/2){ln(tan(((3π)/(10)))−ln(tan((π/5)))}  =(1/2){ ln(tan((π/2)−(π/5)))−ln(tan((π/5)))}  =(1/2){ln((1/(tan((π/5)))))−ln(tan((π/5)))}=−ln(tan((π/5))) ⇒  Ω=−(π/4)ln(tan((π/5)))

Ω=π53π10xsin(2x)dxchangementx=π2tgivet=π2xΩ=3π10π5π2tsin(2t)(dt)=π2π53π10dtsin(2t)Ω2Ω=π2π53π10dtsin(2t)changementtant=ugiveπ53π10dtsin(2t)=tan(π5)tan(3π10)12u1+u2×du1+u2=12[lnu]tan(π5)tan(3π10)=12{ln(tan(3π10)ln(tan(π5))}=12{ln(tan(π2π5))ln(tan(π5))}=12{ln(1tan(π5))ln(tan(π5))}=ln(tan(π5))Ω=π4ln(tan(π5))

Commented by TawaTawa last updated on 27/Jan/20

God bless you sir

Godblessyousir

Commented by mathmax by abdo last updated on 29/Jan/20

you are welcome

youarewelcome

Answered by mind is power last updated on 27/Jan/20

Ω=∫_(π/5) ^((3π)/(10)) (x/(sin(2x)))dx  ∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx⇒  ∫_(π/5) ^((3π)/(10)) (((π/2)−x)/(sin(2((π/2)−x))))dx=∫_(π/5) ^((3π)/(10)) (((π/2)−x)/(sin(π−2x)))dx=−∫_(π/5) ^((3π)/(10)) (x/(sin(2x)))+  (π/2)∫_(π/5) ^((3π)/(10)) (dx/(sin(2x)))⇒  ⇒2∫_(π/5) ^((3π)/(10)) ((xdx)/(sin(2x)))=(π/2)∫_(π/5) ^((3π)/(10)) (dx/(sin(2x)))=(π/4)∫_(π/5) ^((3π)/(10)) (dx/(sin(x)cos(x)))  =(π/4)∫_(π/5) ^((3π)/(10)) ((cos(x))/(sin(x).cos^2 (x)))dx=(π/4)∫_(π/5) ^((3π)/(10)) cot(x).(1+tg^2 (x))dx  =(π/4)∫_(π/5) ^((3π)/(10)) tg((π/2)−x)d(tg(x))  =(π/8)[−tg^2 ((π/2)−x)]_(π/5) ^((3π)/(10)) =−(π/8)(tg^2 ((π/5))−tg^2 (((3π)/(10))))  we can find  exact tg((π/5)),and tg(((3π)/(10)))

Ω=π53π10xsin(2x)dxabf(x)dx=abf(a+bx)dxπ53π10π2xsin(2(π2x))dx=π53π10π2xsin(π2x)dx=π53π10xsin(2x)+π2π53π10dxsin(2x)2π53π10xdxsin(2x)=π2π53π10dxsin(2x)=π4π53π10dxsin(x)cos(x)=π4π53π10cos(x)sin(x).cos2(x)dx=π4π53π10cot(x).(1+tg2(x))dx=π4π53π10tg(π2x)d(tg(x))=π8[tg2(π2x)]π53π10=π8(tg2(π5)tg2(3π10))wecanfindexacttg(π5),andtg(3π10)

Commented by TawaTawa last updated on 27/Jan/20

God bless you sir

Godblessyousir

Commented by mind is power last updated on 27/Jan/20

thak you ,withe pleasur

thakyou,withepleasur

Terms of Service

Privacy Policy

Contact: info@tinkutara.com