All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 79646 by abdomathmax last updated on 27/Jan/20
calculateAn=∫01cos(narcosx)dxwithnintegrnatural
Commented by abdomathmax last updated on 12/Mar/20
changementarcosx=tgivex=cost⇒An=∫π20cos(nt)(−sint)dt=∫0π2sintcos(nt)dtwehavesintcos(nt)=cos(π2−t)cos(nt)=12{cos(π2−t+nt)+cos(nt−π2+t)}=12{cos((n−1)t+π2)+cos(π2−(n+1)t)=12{−sin(n−1)t+sin(n+1)t}⇒An=12∫0π2sin(n+1)tdt−12∫0π2sin(n−1)dt=−12(n+1)[cos(n+1)t]0π2+12(n−1)[cos(n−1)t]0π2=−12(n+1){cos(n+1)π2−1}+12(n−1){cos(n−1)π2−1}(n≠1)A1=∫01xdx=12
Terms of Service
Privacy Policy
Contact: info@tinkutara.com