Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79646 by abdomathmax last updated on 27/Jan/20

calculate  A_n =∫_0 ^1  cos(narcosx)dx  with n integr natural

calculateAn=01cos(narcosx)dxwithnintegrnatural

Commented by abdomathmax last updated on 12/Mar/20

changement arcosx=t give x=cost ⇒  A_n =∫_(π/2) ^0  cos(nt)(−sint)dt  =∫_0 ^(π/2)  sint cos(nt)dt  we have sint cos(nt)  =cos((π/2)−t)cos(nt) =(1/2){ cos((π/2)−t+nt)+cos(nt−(π/2)+t)}  =(1/2){ cos((n−1)t+(π/2))+cos((π/2)−(n+1)t)  =(1/2){ −sin(n−1)t  +sin(n+1)t} ⇒  A_n =(1/2)∫_0 ^(π/2)  sin(n+1)t dt−(1/2)∫_0 ^(π/2)  sin(n−1)dt  =−(1/(2(n+1)))[cos(n+1)t]_0 ^(π/2)  +(1/(2(n−1)))[cos(n−1)t]_0 ^(π/2)   =−(1/(2(n+1))){ cos(n+1)(π/2)−1}  +(1/(2(n−1))){ cos(n−1)(π/2)−1}   (n≠1)  A_1 =∫_0 ^1 xdx =(1/2)

changementarcosx=tgivex=costAn=π20cos(nt)(sint)dt=0π2sintcos(nt)dtwehavesintcos(nt)=cos(π2t)cos(nt)=12{cos(π2t+nt)+cos(ntπ2+t)}=12{cos((n1)t+π2)+cos(π2(n+1)t)=12{sin(n1)t+sin(n+1)t}An=120π2sin(n+1)tdt120π2sin(n1)dt=12(n+1)[cos(n+1)t]0π2+12(n1)[cos(n1)t]0π2=12(n+1){cos(n+1)π21}+12(n1){cos(n1)π21}(n1)A1=01xdx=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com