Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 79649 by john santu last updated on 27/Jan/20

given a,ar,ar^2 ,ar^3 ,... is a GPwith   n→∞ ,r < 1  if : a,x_1 ,x_2 ,ar,x_3 , x_4 ,x_5 ,x_6 ,ar^2 ,  x_7 ,x_8 ,x_9 ,x_(10) ,x_(11) ,x_(12) , ar^3 ,... .  where : a,x_1 ,x_2 ,ar ⇒AP  ar,x_3 ,x_4 ,x_5 ,x_6 ,ar^2 ⇒AP  ar^2 ,x_7 ,x_8 ,x_9 ,x_(10) ,x_(11) ,x_(12) ,ar^3 ⇒AP  ...etc  if lim_(n→∞)  (x_1 +x_2 +x_3 +...)= ((21)/(16))×(a/(1−r))  what is r ?

givena,ar,ar2,ar3,...isaGPwith n,r<1 if:a,x1,x2,ar,x3,x4,x5,x6,ar2, x7,x8,x9,x10,x11,x12,ar3,.... where:a,x1,x2,arAP ar,x3,x4,x5,x6,ar2AP ar2,x7,x8,x9,x10,x11,x12,ar3AP ...etc iflimn(x1+x2+x3+...)=2116×a1r whatisr?

Commented byjohn santu last updated on 27/Jan/20

mister Mjs , W, mind is power i need your help

misterMjs,W,mindispowerineedyourhelp

Commented bymind is power last updated on 27/Jan/20

a,x_1 ,x_2 ,ar   Ap  s=2a(1+r)  x_1 +x_2 =2a(1+r)−a(1+r)=a(1+r)  x_3 +x_4 +x_5 +x_6 =2(ar+ar^2 )  x_7 +........+x_(12) =3(ar^2 +ar^4 )  we get Σx_k =Σ(a+2ar+3ar^2 +.......)+Σ(ar+2ar^2 +........)  =aΣ(1+2r+3r^2 +....)+arΣ(1+2r+3r^2 +.......)  =(a+ar)Σ(1+2r+3r^2 +....)  Σ_(k≥1) kr^(k−1) =Σ(d/dr)(r^k )=(d/dr)Σr^k =(d/dr)((r/(1−r)))=(1/((1−r)^2 ))  ⇒((a(1+r))/((1−r)^2 ))=((21a)/(16(1−r))),r∈]0,1[  ⇒21(1−r)=16(1+r)⇒5=37r⇒r=(5/(37))

a,x1,x2,arAp s=2a(1+r) x1+x2=2a(1+r)a(1+r)=a(1+r) x3+x4+x5+x6=2(ar+ar2) x7+........+x12=3(ar2+ar4) wegetΣxk=Σ(a+2ar+3ar2+.......)+Σ(ar+2ar2+........) =aΣ(1+2r+3r2+....)+arΣ(1+2r+3r2+.......) =(a+ar)Σ(1+2r+3r2+....) k1krk1=Σddr(rk)=ddrΣrk=ddr(r1r)=1(1r)2 a(1+r)(1r)2=21a16(1r),r]0,1[ 21(1r)=16(1+r)5=37rr=537

Commented byjohn santu last updated on 27/Jan/20

sir the option   (1/2), (1/3),(1/4),(1/5) and (1/6)

sirtheoption 12,13,14,15and16

Commented byjohn santu last updated on 27/Jan/20

may be it answer in my book wrong

maybeitanswerinmybookwrong

Commented byjohn santu last updated on 27/Jan/20

thank you mr Mind is power, W

thankyoumrMindispower,W

Commented bymind is power last updated on 27/Jan/20

withe pleasur

withepleasur

Answered by mr W last updated on 27/Jan/20

ar^k ,x_(m+1) ,x_(m+2) ,...,x_(m+2(k+1)) ,ar^(k+1)  are AP  with m=Σ_(j=0) ^(k−1) 2(j+1)=2×((k(k+1))/2)=k(k+1)  say this AP is:  b_0 ,b_1 ,...,b_(2(k+1)) ,b_(2(k+1)+1)   Σb=(((b_0 +b_(2(k+1)+1) )(2(k+1)+2))/2)=(k+2)(ar^k +ar^(k+1) )  Σb=ar^k +Σx+ar^(k+1) =(k+2)(ar^k +ar^(k+1) )  ⇒Σx=(k+1)(ar^k +ar^(k+1) )=a(1+r)(k+1)r^k   ⇒Σ_(all) x=Σ_(k=0) ^∞ a(1+r)(k+1)r^k   ⇒Σ_(all) x=((a(1+r))/r)Σ_(k=1) ^∞ kr^k   ⇒Σ_(all) x=((a(1+r))/r)S  S=1r+2r^2 +3r^3 +...  rS=1r^2 +2r^3 +3r^4 +...  S−rS=r+r^2 +r^3 +...=(r/(1−r))  (1−r)S=(r/(1−r))  S=(r/((1−r)^2 ))  ⇒Σ_(all) x=((a(1+r))/r)×(r/((1−r)^2 ))=((a(1+r))/((1−r)^2 ))  ⇒((a(1+r))/((1−r)^2 ))=((21)/(16))×(a/(1−r))  ⇒((1+r)/(1−r))=((21)/(16))  ⇒16+16r=21−21r  ⇒37r=5  ⇒r=(5/(37))

ark,xm+1,xm+2,...,xm+2(k+1),ark+1areAP withm=k1j=02(j+1)=2×k(k+1)2=k(k+1) saythisAPis: b0,b1,...,b2(k+1),b2(k+1)+1 Σb=(b0+b2(k+1)+1)(2(k+1)+2)2=(k+2)(ark+ark+1) Σb=ark+Σx+ark+1=(k+2)(ark+ark+1) Σx=(k+1)(ark+ark+1)=a(1+r)(k+1)rk allx=k=0a(1+r)(k+1)rk allx=a(1+r)rk=1krk allx=a(1+r)rS S=1r+2r2+3r3+... rS=1r2+2r3+3r4+... SrS=r+r2+r3+...=r1r (1r)S=r1r S=r(1r)2 allx=a(1+r)r×r(1r)2=a(1+r)(1r)2 a(1+r)(1r)2=2116×a1r 1+r1r=2116 16+16r=2121r 37r=5 r=537

Terms of Service

Privacy Policy

Contact: info@tinkutara.com